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Abstract

The concept of evolving components of an artificial intelligence (AI) has seen

increased interest in recent years as the power and complexity of AI has grown. In

entertainment software, this AI can impact the player’s experiences and enjoyment

through elements such as the level of difficulty of the player’s competition. There-

fore AI development is an important research topic, especially as development is

considered difficult by the video game industry. This work applies the evolutionary

computing paradigm to a turn-based domain by evolving team strategies. These

strategies are represented as behaviour trees, a formalism found in the video game

industry and well-suited to the evolutionary algorithm due to their flexibility and

tree structure. During the evolutionary process, strategies are evaluated in Battle

for Wesnoth, an open-source game with a stochastic nature. A fitness function is

defined to assign strategies a numerical strength value, along with a second perfor-

mance metric that is robust to the variance found in the domain. The evolutionary

algorithm then recombines strategies with high strength values, using evolutionary

operators from the literature such as crossover and mutation. Later experiments

focus on evolutionary algorithm parameters, including comparing a variety of fitness

functions to provide insights into their use.

Starting from a number of initial states, numerous strategies are evolved using

this algorithm. These initial states are a null strategy, randomly-generated strategies,

and a number of hand-built strategies. The evolved strategies are then evaluated in-

game, and will be shown to be measurably stronger than the initial strategies.
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Résumé

L’application de l’informatique évolutive au domaine de l’Intelligence Artificielle

(IA) émerge naturellement. Pour l’industrie du divertissement (jeux ludiques), IA

fait référence aux différents éléments visuels ou non qui déterminent une partie im-

portante de l’expérience du joueur. Cette responsabilité fait en sorte que développer

des système d’IA n’est pas une tâche simple, ce qui en fait un domaine de recherche

intéressant. Ce travail applique les concepts d’informatique évolutive a un jeu par

tour en lassant évoluer des stratégies d’IA. Les stratégies sont représentées par des

arbres de comportement. Nous retrouvons cet automate dans l’industrie des jeux

digitales, en général il est flexibles et bien adapté a l’informatique évolutive. Durant

le processus d’évolution les stratégies sont évaluées dans le jeu Battle for Wesnoth,

un jeu logiciel libre de nature stochastique. Une fonction d’aptitude est assignée

aux stratégies afin de déterminer numériquement leur efficacité, de plus l’algorithme

utilise des mesures robuste à la variance du processus. L’algorithme d’évolution re-

combine les stratégies efficaces utilisant des opérateurs évolutionnaires basés sur

littérature par exemple, mutation ou transition. De plus amples expériences se con-

centrent sur différents paramètres et leurs utilités, par exemple les fonctions d’apti-

tudes.

L’algorithme utilise de multiples états initiales : stratégie nulle, stratégie issue du

hasard et stratégies de conception humaine. Les stratégies sont ensuite testées dans

le jeu. Il est démontré par la suite que les stratégies évoluées par l’algorithme sont

plus efficace que leurs états initiaux.
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Résumé ii

Acknowledgments iii

Contents iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 AI Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 AI Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Evolutionary Computing 6

2.1 Biological Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Adaptation to Computing . . . . . . . . . . . . . . . . . . . . 7

2.2 Sample Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

iv



2.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Population Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Creating a New Generation . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.3 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.4 Repairing Solutions . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Behaviour Trees 16

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Node Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Composite nodes . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Non-composite Nodes . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Use in Industry and Research . . . . . . . . . . . . . . . . . . . . . . 19

4 Related Work 22

4.1 Evolutionary Computing . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Game State Evaluation . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Evolving Behaviour Trees . . . . . . . . . . . . . . . . . . . . 30

5 Problem Domain 32

5.1 Battle for Wesnoth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Turn-based Nature . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Unit Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Simplifications Made . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



5.2.1 Unit Recruitment and Economy . . . . . . . . . . . . . . . . . 36

5.2.2 Other Mechanics Removed . . . . . . . . . . . . . . . . . . . . 37

6 Methodology 39

6.1 Strategy Representation . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Node Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.2 Composite Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.3 Action Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Collecting Output . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.4 Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Experiments and Results 52

7.1 Baseline Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1 Null Strategy - SNull . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.2 Hand-built Strategies . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.3 Baseline Performance . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Evolving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 From Null Strategies . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.2 From Random Strategies . . . . . . . . . . . . . . . . . . . . . 69

7.2.3 From Seeded Strategies . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Fitness Function Selection . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.1 Health Difference . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



7.3.2 Average Health . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.3 Competitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.4 Weighted Competitive . . . . . . . . . . . . . . . . . . . . . . 76

7.3.5 Win/Lose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Effect of Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Conclusions and Future Work 82

8.1 Behaviour Tree Formalism . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1.1 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . 83

8.2 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.1 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . 85

8.3 Evolved Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



List of Tables

5.1 Two attacks of the Dwarvish Fighter . . . . . . . . . . . . . . . . . . 35

6.1 Action nodes created . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Parameters for creation of new generation . . . . . . . . . . . . . . . 48

6.4 Mutation operator weights . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 Performance results for baseline strategies . . . . . . . . . . . . . . . 56

7.2 Performance of strategies evolved from SNull . . . . . . . . . . . . . . 61

7.3 SB performance in different environments . . . . . . . . . . . . . . . . 68

7.4 Evaluation of evolved random strategies . . . . . . . . . . . . . . . . 71

7.5 Evaluation of evolved seeded strategies . . . . . . . . . . . . . . . . . 74

7.6 Performance of strategies evolved with different fitness functions . . . 79

7.7 Performance of strategies evolved with varying random seeds . . . . . 81

viii



List of Figures

2.1 A non-optimal cycle in the Travelling Salesman Problem . . . . . . . 9

2.2 One crossover operation for TSP . . . . . . . . . . . . . . . . . . . . . 13

3.1 Behaviour tree for opening a door . . . . . . . . . . . . . . . . . . . . 18

4.1 A binary expression tree . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Units fighting on a Wesnoth map . . . . . . . . . . . . . . . . . . . . 34

6.1 Diagram of evolutionary algorithm . . . . . . . . . . . . . . . . . . . 45

6.2 SDefence in two data formats . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 The AI testing map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1 SNull behaviour tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Behaviour trees for two hand-built strategies . . . . . . . . . . . . . . 54

7.3 SDefence behaviour tree . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4 Fitnesses of SNull evolution . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Three behaviour trees evolved from SNull . . . . . . . . . . . . . . . . 60

7.6 Comparison of D values for evolved strategies . . . . . . . . . . . . . 62

7.7 In-game movements of evolved strategies . . . . . . . . . . . . . . . . 66

7.8 Two maps in Wesnoth . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.9 Fitnesses for evolution from random strategies . . . . . . . . . . . . . 70

7.10 Fitness results for Seeded evolution . . . . . . . . . . . . . . . . . . . 73

7.11 Average and maximum fitness value graphs for five fitness functions . 78

ix



7.12 Evolution fitness when varying random seed . . . . . . . . . . . . . . 80

x



Chapter 1

Introduction

The complexity of entertainment software has risen along with an increase in

hardware power over the last few decades. From graphics to simulated physics to

artificial intelligence, all aspects of video game software have seen vast improvement.

This has propelled the video game industry to reach millions of consumers, and has

created a multi-billion-dollar market. The underlying technology for entertainment

software has also found other markets such as in serious games, which are used for

educational purposes such as training of law enforcement or military activities [35].

Therefore, advancements in entertainment software are of wide interest to a number

of different fields and applications.

1.1 Artificial Intelligence

A main component of many video game experiences is that of competition of

the player against an adversary or obstacle. For instance, a human player may be

battling against an army of dozens of soldiers. In this instance, it would not be

practical for every soldier to be controlled by another human being. Therefore, an

artificial intelligence (AI) is developed to control these virtual soldiers. This control

could be on a number of different levels, from an individual soldier’s movement, to a

squad formation, to an entire army’s level of aggressiveness. For the purposes of this
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work, artificial intelligence will be considered to drive the behaviours and actions of

units on a team.

1.2 AI Impact

The artificial intelligence in a video game can control the behaviour of both the

allies and enemies of the player. Therefore, its strength may positively or adversely

affect the challenge in the game [61]. For example, a chess AI that does not match the

player’s skill level may make the player bored or frustrated while playing. The field

of difficulty adjustment considers how the gameplay experience may be customized

to the player’s skill for greater enjoyment.

Considering this large impact on gameplay, artificial intelligence is an important

part of game development. However, creating a strong artificial intelligence is not

a trivial process. In order to make realistic decisions, a virtual soldier must handle

changing game conditions, random events, and the existence of a finite computation

time to make decisions in. These demanding attributes mean that high-performance

AI is an interesting research topic, both within academia and industry.

1.3 AI Techniques

From examining different video game genres, it is clear that they require varied ar-

tificial intelligence strategies. The enemies of an arcade game may have a finite-state

machine to move and chase the player. This simple representation can be sufficient

for some games, such as for the simple ghost opponents in Pacman. 1 Other AIs may

perform some measure of planning and management of resources, such as required

in a real-time strategy (RTS) game. In the RTS Warcraft series, 2 the AI must coor-

dinate building structures, training troops, researching technologies to unlock more

powerful abilities, and ordering their units to attack. One way of accomplishing

these complex sequential actions is through a ruleset or case-based reasoning, which

1. Namco, 1980

2. Blizzard Entertainment
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matches game states to applicable strategies [48]. In board games such as chess, a

standard technique is to simulate future moves [53]. All possible moves by the AI

and their opponent are simulated for a number of turns forward, and each new board

state is evaluated. The AI can then select moves that will lead to a victory, or at least

a strong board state. First-person shooters are another highly-complicated domain.

Artificial intelligence in these games may have to consider line-of-sight, direction of

shooting, taking cover, and other issues in a real-time environment [61].

This heterogeneity of domains means that AI development for one game may not

be transferable to another. Developers thus spend a large amount of time build-

ing and customizing an AI to fit a new game [59]. While research on re-using AI

components between games has been performed, this is not yet a mature field [11].

Even within a game’s development, new game mechanics or play-testing feedback

may require developer to modify the AI. Therefore, it is valuable to investigate ways

to improve this development cycle.

1.4 Problem Statement

Machine learning has been used to develop game-playing AIs with great success.

In one case, a neural net was trained to play BackGammon [58]. It achieved such

a high level of performance that experts began using its moves in tournament-level

play. Evolutionary algorithms have also shown strong performance among a number

of problems, sometimes producing a solution better than human experts [29].

This work aims to use techniques from machine learning, specifically evolution-

ary computing, in order to improve AI performance through an unsupervised learn-

ing process. An evolutionary computing algorithm iteratively evaluates solutions to

a problem, and combines the best-performing solutions together. For the studied

problem, a solution is a strategy for a team of units that controls their actions. This

strategy will be encoded in the behaviour tree formalism which has been recently

used in both industry and academia, due to being an expressive and human-readable
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representation of AI. The behaviour tree formalism, as well as modifications made

to suit this domain, are discussed later in this work.

The evolutionary process, as described later, will attempt to evolve strong strate-

gies from a number of initial states, as scored by a robust performance metric. Later

results will show limited success as some evolved strategies achieve a stronger per-

formance than numerous hand-built solutions.

While research has been done in the evolution of AI strategies, this work considers

the domain of turn-based games. This domain allows for the selection of a wide

variety of fitness functions, while the discrete nature of the turn-based game allows

this paper to clearly demonstrate the difficulties and successes of the evolutionary

algorithm.

The problem statement is thus:

How can evolutionary computing be applied to behaviour trees to evolve novel

artificial intelligence strategies for a selected turn-based game? What are potential

areas of improvement in this process?

1.5 Thesis Contributions

The main contribution of this work is a fully functional evolutionary computing

algorithm that can automatically create and evaluate AI strategies for a turn-based

game. This game will be Battle for Wesnoth (abbr. Wesnoth), with the caveat that a

few game mechanics have been removed. The particulars are discussed in Chapter 5.

As it is turn-based, Wesnoth is somewhat similar to chess. However, an artificial

intelligence may not be able to use a look-ahead search as is common in chess AIs.

This is due to battles in Wesnoth having a highly random nature, as well as the

number of possible movements for each unit. Due to these complications, another

artificial intelligence approach is required. This paper proposes the use of behaviour

trees in order to represent team strategies.

The algorithm used to produce these strategies must handle the interesting com-

plexity arising from the element of randomness present in Wesnoth. In particular,
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this work defines the use of a performance metric for strategies that is less sensitive

to the randomness present in the domain. Other contributions include results and

conclusions on the selection and use of various fitness functions used to evolve strate-

gies. A fitness function is a metric for determining how well each strategy performs

in a battle.

The last major contribution of this work is a detailed discussion of the evolution-

ary process and the performance of the created strategies. In-game actions of the

evolved strategies are examined, along with a critical discussion of the generality of

these results. Later discussions also focus on performance improvements that could

be made to this process, as well as technical details useful to replicate this work.

1.6 Thesis Organization

The next chapter of this paper will provide background on evolutionary comput-

ing, as well as present the formalism of behaviour trees and their use in the video

game industry. Following this, Chapter 4 will take a comprehensive look at genetic

algorithms in the literature, as well as some problems they are well-equipped to solve.

Chapter 5 will provide background on the video game selected for this work, named

Battle for Wesnoth. A brief overview will be provided, along with a short discussion

on the complexity of this domain. Chapter 6 describes the methodology of this work,

the components of the evolutionary computing algorithm, and the particulars of how

the algorithm integrates with Battle for Wesnoth. The results of the evolutionary

process are then shown in Chapter 7, together with a study of the strategies evolved.

Finally, a detailed conclusion of the work will be presented along with avenues of

future work in Chapter 8.
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Chapter 2

Evolutionary Computing

The field of evolutionary computing is built on concepts from evolutionary think-

ing in biology as applied to problems in computing. Other names for this field

include evolutionary programming or the field of genetic algorithms. This chapter

will describe the basic concepts of evolutionary computing and provide a reference

example of a well-known computing problem. Related work concerning evolutionary

computing will be discussed in a later chapter.

2.1 Biological Inspiration

In the biological sciences, the reproduction of an individual is key to the success

of that individual’s species. This reproduction capability or even the survival of the

individual depends on different genes with the individual’s genome. For example,

genes may have subtle or overt effects on the strength of the immune system or the

ability to find food through smell. These differences may arise through mutations

in the genetic code or through sexual recombination of the parent’s genetic code.

Individuals in biology can be seen as solutions for the problem of survival and re-

production. Successful individuals and species are those that can survive in their

environment and reproduce. Their genetic code will be passed on to the next gen-

eration with some modifications and recombinations. Due to natural selection, the
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beneficial genes will therefore spread throughout a population, while the deleterious

genes will be less prevalent.

2.1.1 Adaptation to Computing

These concepts of evolution and natural selection were formalized by John Hol-

land as the field of evolutionary computation, in which a simple algorithmic process

can be employed to automatically produce solutions for a specific problem [21]. How-

ever, there may be difficulty in adapting the evolutionary algorithm to the problem

domain. A number of elements in the algorithm must be formally defined to suit the

domain, such as the problem representation, the evaluation of solutions, and solution

modification.

Pseudo-code for a evolutionary algorithm can be seen in Algorithm 1. It will

iteratively search a number of points in the solution space, starting from a population

initialized in line 1. The parameters on lines 5 to 7 control when execution should

cease, and are evaluated in the main loop on line 8. The algorithm may be set

to stop when a computing time limit is reached. This time limit can be updated

after each generation, as shown on line 15. Another criteria may be to run the

algorithm for a certain number of iterations, labelled generations. This is seen in

the Gcurr parameter, as updated on line 16. Finally, the algorithm may stop when

a solution’s fitness reaches a fitness target, which means that a solution has been

found of sufficient quality. For each generation, the population is evaluated using a

fitness function, as on line 9. This gives a numerical fitness value, which is a rating

of how well each solution solves the stated problem.

Lines 10 to 14 show how a new generation Q is created. Solutions in P with a

high fitness value are combined together by genetic operators to create a new set

of points in the solution space, denoted Q. Then, P is set to Q and the algorithm

continues. Over a number of generations, these points P will settle into areas of the

solution space representing strong solutions to the problem.
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1: P.initialize()

2: Pfitness ← 0

3: Gcurr ← 0

4: Ttaken ← 0

5: Set fitness target F

6: Set generation limit G

7: Set time limit T

8: while (Pfitness < F ) and (Gcurr < G) and (Ttaken < T ) do

9: Pfitness ← P.evaluate()

10: Q = ∅
11: Q.addTreesSelectedFrom(P)

12: Q.addTreesRecombinedFrom(P)

13: Q.mutateTrees()

14: P ← Q

15: Ttaken ← Ttaken+ deltaT

16: Gcurr ← Gcurr + 1

17: end while
Algorithm 1: Evolutionary algorithm pseudo-code

This pseudo-code provides the structure for the following concrete example of

evolutionary computing, based on a well-known problem and the works of Goldberg,

Holland et al. [15] [21]. Discussion of each point will lead to examination of extension

into more difficult problems. A following chapter will present a genetic algorithm for

the studied problem domain.

2.2 Sample Problem

The sample problem to be discussed will be the Travelling Salesman Problem,

which attempts to find the shortest cycle that will visit all points in a list. This

problem’s name is modelled on an imagined travelling salesman who must travel the

minimum distance to a list of different cities before returning to his home city.
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For example, let there be eight cities labelled A to H randomly placed on a two-

dimensional plane as in Figure 2.1. Let all cities have a viable connection between

them of Euclidean distance.

A

C

B

D

E
F

G
H

Figure 2.1: A non-optimal cycle in the Travelling Salesman Problem

2.2.1 Complexity

The number of possible tours for an n-city Travelling Salesman Problem example

is (n− 1)!/2. This is calculating by picking an arbitrary city as the first. There are

then n − 1 cities to choose for the second to visit, n − 2 for the third, and so on.

The division by two occurs because it does not matter in which direction the cycle

is performed. This factorial search space may be computationally prohibitive for

a brute-force search, and hill-climbing techniques may also fail as the search space

is non-continuous. However, genetic algorithms can be applied with success to this

NP-complete problem [31]. In particular, Banzhaf shows an implementation that

produces a solution on a problem with 100 cities that approaches 10% of the global

optimum [6]. While the solution given is not optimal, genetic algorithm solutions

may approach optimality over a larger number of generations or at least provide an

acceptable solution in an extremely high-dimensional search space.
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2.3 Representation

A representation of a solution to the problem creates the search space that the

genetic algorithm will attempt to optimize over. According to Wall [62]:

For any genetic algorithm, the representation should be a minimal,

complete expression of a solution to the problem. A minimal represen-

tation contains only the information needed to represent a solution to

the problem. A complete representation contains enough information to

represent any solution to the problem. If a representation contains more

information than is needed to uniquely identify solutions to the problem,

the search space will be larger than necessary.

In the sample problem, a solution is defined as a cycle of cities to be visited.

For example, one possible cycle may be A,C,D,E,H,B,G, F as in Figure 2.1. This

would represent the salesman visiting city A, travelling to city C and so on until city

F . Upon leaving city F he would return to city A, completing the cycle. It can be

seen that this representation is complete as it can represent any possible cycle. The

search space is also limited to the ordering of cities which is the only consideration

for this problem.

An effective representation of the solution therefore depends on the domain of the

problem, and must be carefully constructed. The representation of solutions directly

affects other steps in the algorithm such as evaluation and recombination, as will be

shown.

2.4 Population Initialization

Once the solution representation has been decided, the next step is to create an

initial population of solutions, as on line 1 of the above pseudo-code. As these indi-

viduals are points in the solution search space, one approach is to randomly generate

them, hopefully covering the space. If hand-built or previously-evolved solutions

are available, these may be copied or seeded to be the initial population. This is

10



done in order to guide the search to better-performing solutions. However, as with

other randomized optimization algorithms, local maxima may be encountered. This

is dependent on the problem domain as well as the random nature of the algorithm.

The choice of population size is not a trivial one. Various works have been done

to select an appropriate fitness size based on the problem domain and the nature

of modifications to the individual [10]. The literature suggests selecting the largest

population size that is computationally feasible, as more points will be searched at

once [22]. However, as each point takes some time to be evaluated, the time per

generation may increase prohibitively.

2.5 Evaluation

The individuals in the population must now be evaluated in order to measure

how well they solve the problem. This step in the pseudo-code is line 9. This

metric is called the fitness or objective function. It is a heuristic to discriminate

between solutions that solve the problem poorly and those that perform well. This

is usually done by forming a maximization or minimization problem, and assigning

a real-valued number to each solution.

The objective in the Travelling Salesman Problem is to find a cycle of minimal dis-

tance. Let the fitness function fit(x) operate on an individual and also define a min-

imization problem. Let fit(x) = dist(C1, C2)+dist(C2, C3)+ · · ·+dist(CN−1, CN)+

dist(CN , C1), where Cn is the last city in the cycle and N is the number of cities in

the cycle. Again, cities are assumed to be fully connected, and the distance is the

Euclidean distance between them.

This fitness function is an accurate heuristic to the problem. An x that is a short

cycle will be assigned a small distance score by fit(x). For other problems, a formal

measurement of the fitness of one solution may be hard or impossible to define, such

as defining a ‘fit’ painting or song. There may also be an issue with optimizing several

fitness criteria at once. This problem is studied in game theory as the concept of

Nash equilibria, and it has been applied to evolutionary computing [45]. In this work
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by Périaux et al. multiple criteria are selected in turn as the fitness function for the

solution. This continues until there is no improvement under any criteria, in which

case the solution has then converged to an optima.

2.6 Creating a New Generation

At this point in the evolutionary algorithm, an initial population of solutions

have been created and those solutions have been quantitatively measured. Now

the algorithm can use this fitness value to generate new and potentially more fit

individuals from the current population. This is seen in the pseudo-code on lines 10

to 14. It should be noted that this new generation is not required to be the same

size as the previous generation, and that a variable population size over generations

may be beneficial [22]. This work will only consider a fixed population size.

This new generation will be created by selection, in which individuals are copied

from the current generation, and crossover, where two parent individuals are com-

bined to produce a child solution. A mutation operator will also act on some indi-

viduals in the new generation to add more variation to the population.

2.6.1 Selection

A selection scheme aims to ensure that very fit individuals can be chosen, ei-

ther to be directly copied into the next generation or as parents for the crossover

operation. By preferentially selecting fit individuals, the new generation will contain

individuals that are equal or fitter than the previous generation. However, it may

also be important for low-fitness individuals to propagate as well, as they may con-

tain elements of the optimal solution. Thus, diversity in the population is beneficial.

Line 11 refers to the selection process.

In elite selection, a small number of the most fit individuals in a generation are

copied forward into the next generation. This ensures that the best solutions are

retained from generation to generation.

A roulette or weighted method is biased towards selected individuals that are

more fit. The individuals are weighted based on their fitnesses’ proportion of the
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population’s summed fitness, or in the case of a minimization problem, the reciprocal

fitness. This scheme is beneficial as it preserves diversity since low-fitness individuals

have a small random chance of being selected for propagation.

In tournament selection, there are some number n of tournament rounds. In

each round, two candidate individuals are randomly picked. The individual with the

higher fitness score is declared the winner of the round and will appear in the next

round. With a higher n, it is more likely that a higher scoring fitness individual

will be chosen. There is also a random chance that low scoring individuals may

be chosen if tournaments happen to occur between less-fit individuals. As with the

roulette method, this is beneficial for diversity.

2.6.2 Recombination

Along with copying of individuals to the new generation, other operators combine

solutions together. One method is known as crossover and involves taking elements

of two individuals and combining them to create new children individuals. This is

referred to in the pseudo-code algorithm above on line 12

For the Travelling Salesman Problem, the representation of a solution is a list

of cities. Assume that two parent individuals have been selected using the methods

above. One crossover operator will be described here that combines the order of cities

of the parents to create the child. This is done by taking n cities in one parent’s

cycle and the other N − n cities from the other cycle. This must be done without

duplication of cities in order to have a valid solution, as in Figure 2.2. A search in

the literature will find multiple operations of higher complexity [31].

A-G-D-H-B-E-C-F F-B-C-H-G-A-E-D

G-D-H-B - F-C-A-E
Figure 2.2: One crossover operation for TSP
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The point of recombination is to take two existing solutions and select elements

from both. Therefore the success of this operation heavily depends upon the repre-

sentation and the operators used. Early work in genetic algorithms heavily focused

on how operators should combine solutions. In particular, the study of schemata

identifies structural elements of the solution that are important to the solution’s

fitness [15].

2.6.3 Modification

Modification or mutation operators are also typically used in order to introduce

further variation into the population, allowing the population to search new points

in the search space. Line 13 denotes this in the pseudo-code algorithm. For the

representation above, the mutation operator could simply exchange the position of

two cities in a cycle. Another operator could randomly pick a city and move it to

another point in the cycle.

For other representations this mutation operator may be quite complex. For

example, representations that include real-values variables may be modified by a

Gaussian deviation. Tree representations like those in this work may also have

structure-changing operations, as will be discussed in a future chapter.

2.6.4 Repairing Solutions

The crossover and mutation operations above may drastically modify a solution

to the point where the solution is invalid in some way. For example, the crossover

operation specified above was created to prevent cities from appearing more than

once, as this would be an invalid cycle. An invalid solution is not desirable as

computation will be wasted on evaluation. To resolve this issue, the modification

operators may be designed in such a way that invalid solutions cannot be produced,

or a specialized repair operation may be defined to examine solutions and correct

them.
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2.7 Iteration

Once a new generation has been created by the evolutionary algorithm, those

individuals are then evaluated and assigned a fitness value. In turn, yet another gen-

eration of individuals are produced through the selection and modification operators,

and the algorithm iterates. As mentioned, the stop criteria for this algorithm could

be the algorithm running for a specified amount of time or number of generations. A

more advanced criteria might consider the fitness of the population. If the average

or maximum fitness of the population has not changed in a number of generations,

the fitness improvement may have plateaued. This could indicate that the process

should be restarted to attempt to find another optima.

It is important to note that the population of the last generation when the evo-

lutionary algorithm stops may not contain the highest-performing individuals. The

evolutionary process may have randomly discarded these individuals. For this reason,

it is advisable to explicitly record the highest-performing individuals seen through-

out the evolution process. These recorded individuals will be the final output of the

evolutionary computing algorithm.
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Chapter 3

Behaviour Trees

This chapter will introduce behaviour trees as the formalism used to represent

artificial intelligence strategies in this work. A brief discussion will also highlight

the known use of behaviour trees in the video game industry. A later chapter will

discuss the specifics of how behaviour trees were evaluated and modified during the

evolutionary process.

3.1 Overview

Behaviour trees have been gaining prominence in the game development industry

as a representation and encapsulation of the behaviour of an artificial intelligence [8].

This formalism is similar to a hierarchical state-machine, but offers superior re-

usability and modularity [39]. Actions in a behaviour tree can be at any level of

abstraction, which allows high-level concepts to be expressed in a human-readable

manner. This readability attribute allows behaviour trees to be created and modified

by non-programmers on a game development team, which can provide improved

flexibility and speed in the AI design process [7].

Behaviour trees are queried by a character to order to determine the action to

perform. This query flows through various nodes from the root of the tree to the

leaves in a post-order depth-first search with pruning. The internal nodes of the tree
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control the query flow depending on values returned from their children. The leaf

nodes of the tree are usually either condition nodes to query the state of the world,

or action nodes which specify what action the character should perform. An example

behaviour tree is shown in Figure 3.1. It encodes the behaviour for a character to

open a door and will be discussed in more detail below.

3.2 Node Definition

As with other tree structures, behaviour tree nodes have parent and child nodes.

However, when queried these nodes will return a status value. In a simplified model

as used in this work, these return values will be binary true/false values indicating

whether the node successfully completed its task or not. In a environment where

actions may take a number of time-steps to complete, nodes may be given further

return values to indicate they are currently active [27].

3.2.1 Composite nodes

Composite nodes impose control on the query flow within the tree. The query will

move down different subtrees depending on the type and attribute of the composite

node, as well as the values returned by the composite node’s children nodes. The

two simplest composite nodes are the Selector node and the Sequence node, both

of which are seen in Figure 3.1. One convention is also to represent these nodes as a

question mark and arrow respectively.

The Selector node is used to pick a single subtree to query out of its children.

The Selector node queries all of its children nodes in a particular order, usually

depicted as left-to-right on a diagram. The Selector node will immediately return

a true value if any child returns true, otherwise the next child will be queried. The

Selector node will return false only if all children are false.

Like the Selector node, children of a Sequence node are evaluated in a deter-

ministic order. If any child returns false, the Sequence immediately returns false. If

all children return true, the Sequence returns true. The Sequence node is therefore

used to represent a number of actions that must take place in a particular order.
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In Figure 3.1, a behaviour tree encodes the unit’s strategy to enter a room. In

this example, the DoorLocked node returns a true/false value. If this value is true,

then the Sequence node will query the next child, and the unit will perform the

UnlockDoor action. Otherwise, if DoorLocked returns false, the Selector node will

query the right-hand subtree, so the unit will perform the EnterRoom action.

Sequence EnterRoom

Selector

UnlockDoorDoorLocked?

Figure 3.1: Behaviour tree for opening a door

These composite nodes can be modified to offer further flexibility to the AI de-

signer. For example, the order of child querying could be randomized which would

make the Selector node useful for randomly selecting an action to take. A further

modification would be to ensure that all actions have been selected before any repe-

titions. Temporary adjustments of child order are also possible by adding dynamic

priority to children [20].

3.2.2 Non-composite Nodes

Non-composite nodes could be any form of condition node or action node. As

the name implies, the condition node returns a true/false answer to a specified test.

In combination with the composite nodes, the behaviour tree can then control the

query flow through the tree. For example, Figure 3.1 shows a condition node Door-

Locked that checks if a door in the game world is locked. Complicated tests may be

abstracted into a single node, allowing non-programmers to utilize them effectively.
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Action nodes in a tree are highly domain-specific and may represent a wide range

of actions related to a character or to the game state. For example, an action may be

a command for the character to fire a gun, move towards a goal, or play a particular

animation or sound. The abstraction provided by these nodes allows for a variety

of related tasks to be handled by the same decision structure, in a human-readable

manner. Action nodes for the studied domain will be presented in a future chapter.

Decorator Nodes

Decorator nodes are single-child internal nodes that modify the behaviour the

behaviour of their child node. This increases the readability and expressiveness of

behaviour trees, similar to the well-known decorator pattern in programming. For

example, a Negator node may return the negation of its child’s value, while a

Repeater node could repeatedly query its children until the child returns true, or

for some number of iterations. Decorator nodes allow complicated processing to

occur while still respecting the behaviour tree formalism.

3.3 Use in Industry and Research

Behaviour trees have been used in a number of high-profile commercial video

games [7]. They are cited for their human-readability and high degree of flexibil-

ity [24]. Although there are few formal industry and research publications on the

technique, there are a growing number of conference slides and short electronic ar-

ticles. In order to provide a resource for future research, this section will highlight

examples of behaviour tree use and innovations within the industry and academia.

For the game Destroy All Humans, 1 the behaviour tree formalism above was

modified to create a highly modular or ’puzzle-piece’ system with great flexibility

and ease-of-use [30]. This was accomplished through the ability of parent nodes to

pass down arbitrary objects to their children. While this does raise the complexity of

the nodes, the characters could then act intelligently in a wider variety of situations,

reducing the amount of specialized code.

1. Pandemic Studios, 2005
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In the first-person shooter game Crysis, 2 the artificial intelligence was required to

coordinate multiple teammates in a flanking manoeuvre [47]. This was achieved by

creating a two-phase process. In the first phase, when a unit queries the Flanking

action node the unit is marked as able to join the flanking manoeuvre. However, the

unit does not begin the action yet. When enough units have signalled they are ready

to begin the manoeuvre, then the second phase begins. Now when the Flanking

action node is queried again, the unit will begin the flanking manoeuvre. This two-

phase process prevents the manoeuvre from overriding high-priority actions a unit

should perform like dodging a grenade, while still allowing effective coordination

between teammates.

Behaviour trees can also be used in case-based reasoning, where a database is

created with game states correlated to the behaviour trees applicable to those states.

This allows the artificial intelligence to perform a look-up of effective strategies with

specialized knowledge about the current game conditions [14]. Behaviour trees in par-

ticular allow effective similarity metrics to find the appropriate case in the database,

as well as facilitating dynamic combination of strategies [43].

A recent implementation of behaviour trees has been in the driving game Driver:

San Francisco 3 [42]. In this work a metric for the player’s gameplay skill classified

players into various difficulty levels. This difficulty level was used to control which

roads the computer-controlled cars drove on during chase sequences. The intention

was for AI cars to turn less often or onto wider roads if players had less skill. The

road selection was implemented in a behaviour tree which could be dynamically

rearranged or modified based on hints given by the difficulty level.

This dynamic adjustment of behaviours trees has also been studied in the do-

main of third-player shooter games. In this domain, the player may regard certain

combat situations as being overly intense, which is detrimental to their gameplay ex-

perience. Artificial intelligence companions of the player may fight alongside them,

affecting their combat experience and therefore the combat intensity. By dynamically

2. Crytek Frankfurt, 2007

3. Ubisoft Reflections, 2011
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switching between different behaviour trees based on a metric of this intensity, the

companion may be able to reduce the combat intensity on the player [61].
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Chapter 4

Related Work

This chapter will discuss how evolutionary algorithms have been employed to

generate solutions to a variety of problems. Four sample problems from the field

of computer science will be examined along with a discussion of evolving evaluation

functions for turn-based games. A brief look at evolution of video game strategies,

mechanics, and content will follow. The second section of this chapter will discuss

the field of genetic programming, which attempts to evolve a program or equation

as a solution to a problem. Finally, literature will be presented on the evolution of

behaviour trees as in this work.

4.1 Evolutionary Computing

Evolutionary computing has found success in a variety of fields, demonstrating

its flexibility and power. The works below are presented as a selection of differing

problem environments and various domain-specific modifications to the evolutionary

algorithm.

One early application of evolutionary algorithms has been to modify the mor-

phology of virtual creatures [54]. Three-dimensional creatures exist in a full three-

dimensional world with simulated physics interactions. Creatures have a graph struc-

ture to represent their limbs along with a simulated brain consisting of various neural
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nodes and sensors to control their limbs. The objective is for the creature to evolve

a strategy in a competitive setting with another creature. A creature’s goal in the

competition is to reduce its distance to a cube, while keeping the other creature as

far away from the cube as possible. Both the neural workings and the morphology

of the creatures are modified in the evolutionary algorithm. Over the course of their

evolution, creatures developed various strategies such as fully encasing the cube,

knocking the cube towards its other arm to carry, or simply knocking the cube away

from their opponent. 1

An informative application of evolutionary algorithms has been to resource-

constrained job scheduling, another NP-hard problem [62]. A solution for this prob-

lem must consider dependencies between jobs, the length a job takes, and jobs which

can only be performed on a particular machine or by a trained operator. The fitness

function is the time required for a particular sequence of jobs to complete, and is to

be minimized in the optimal solution. Evolutionary algorithms are able to produce

optimal or near optimal solutions to a general version of the job shop problem [46].

Their results were comparable to the best known algorithm at the time.

One domain studied with evolutionary algorithms has been placing base stations

for wireless network planning in two-dimensional space [23]. In this domain, base

stations must be placed in candidate locations to serve wireless functionality to

a multitude of subscriber stations in the space. The objective is to minimize the

number of base stations used to serve the subscriber stations while also respecting

the maximum bandwidth capacity of each base station. The recombination operators

of the algorithm were carefully designed to force the base stations to either carry few

or many subscribers, potentially reducing the number of base stations. The authors

consider their algorithm to be effective, since in their experiments only half of the

candidate locations were selected to be used.

1. BoxCar 2D is a modern real-time adaptation. Available online:

http://www.boxcar2d.com/index.html
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Evolutionary algorithms can also be used to dynamically evolve bidding strate-

gies [51]. In this case, strategies encoded the amount of power that can be provided by

a energy provider and the price to charge for this amount. Therefore strategies must

balance the revenue gained by a high price against losing the bids to a competitor.

As the algorithm continued, the authors noticed that particular strategies adapted to

the changed influence of all other strategies and performed well. Therefore, studying

these strategies may provide future economic or bidding insights. Similarly, study-

ing the evolved strategies used in a turn-based game may provide insight into the

underlying strategy space.

4.1.1 Game State Evaluation

An artificial intelligence for board games typically examines future board states

for some number of moves ahead in order to select the strongest move to perform.

For chess an evaluation function may take a weighted count of various pieces in order

to give a numerical evaluation of a board state [53]. For example, a pawn may be

worth one while a queen is worth nine. Historically, piece weights have been selected

by human experts. However, recent work has shown that evolutionary algorithms

can optimize these weights.

Kendall and Whitwell creatively use the standard deviation of piece weights in

their optimization of a chess board evaluation function [26]. A particular piece weight

is examined across all individuals in the population, and the standard deviation of

these values is recorded. When mutation is applied to a piece weight in one individual,

the size of the standard deviation across the population is correlated to the change

of this weight. This correlation aids in the convergence of weight values in the

population, which may indicate when optima have been reached. This is similar to

the concept of simulated annealing, where the rate of change in an optimizing process

will steadily decrease as the search process continues.

This notion of an evaluation function can be extended further in order to take

game strategy into account. For example, the game of four-sided dominoes is played

with four players divided in two teams. Each player has imperfect information and
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must also consider how their actions may affect the actions of their teammates and

opponents [4]. This prediction can be encoded into the evaluation function, where

weights are then optimized by a genetic algorithm.

When an evaluation function is tuned by a evolutionary algorithm, it may be-

come over-specialized to specific opponents. Sun et al. combat this by using multiple

strong-playing computer programs as opponents in their Othello board game do-

main [57]. Their results showed that the use of these multiple “coaches” was more

effective than with a single opponent.

In the Google Artificial Intelligence Competition, the game PlanetWars places

AIs in control of fleets of spaceships fighting over a number of planets. The only

action available to AIs is to move units from one planet to another, and AIs cannot

store any game information from turn to turn. Research shows that a evolutionary

algorithm can create a strategy to play this game using a simple evaluation function

to select planets for fleet movement [12]. Metrics were devised to compare the sample

competition AI with the two AIs in the paper. The first AI had parameters given by

the authors, while the second had these values tuned by the evolutionary algorithm.

These comparison metrics were the number of games won and the turn length of

the games. The turn length consideration was chosen as a proxy to suggest that a

stronger AI would be able to win in less turns than a weaker AI. Further work by

these authors attempted to minimize the stochastic effects on the evaluation of the

parameters [40]. This was done by assigning a score to an AI based on the results of

five runs on five different maps, instead of one battle on one map as in the original

algorithm. Stochastic effects similar to the PlanetWars environment can also be seen

in Battle for Wesnoth, as will be discussed in a future chapter.

4.1.2 Strategies

The game of Lemmings tasks players with ensuring that some number of Lemming

characters traverse a two-dimensional level from a start position to a given exit point.

To overcome obstacles and successfully complete the level, Lemmings are assigned

roles at particular times and locations. For example, roles include a “bomber” role to
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blast a hole in their immediate surroundings, or a “climber” role which allows them

to ascend vertical walls. In their work, Kendall and Spoerer used a evolutionary

algorithm to generate a sequence of action triples to guide Lemmings towards the

exit [25]. These triples contain three identifiers representing the time-step to assign

a role on, the Lemming to receive the role, and the role itself. These sequences were

initially seeded randomly and with a null strategy. In an interesting observation, the

authors state that it may be preferable to start with a null strategy instead of the

randomized strategy. This is because a successful strategy may only require a few

actions at specific time-steps. As a small strategy is closer in solution space from a

null strategy compared to a randomized strategy, the correct strategy may therefore

require less time to evolve. In the work we present here, behaviour trees will be

evolved from a null strategy as well.

The NeuroEvolving Robotic Operatives (NERO) system allows players to evolve

the neural networks of agents to learn battle tactics in a real-time strategy game [56].

The player provides dynamic weighting to the evolutionary algorithm determining

which qualities are important, such as avoiding being hit or damage done to enemies.

The system then periodically removes the worst performing agent and replaces it with

a new agent created through recombination. Over a period of time, agents evolve

strategies such as navigating through a maze and firing their weapons at an attacking

enemy while moving backwards. This system is quite interesting in that the evolution

of new behaviours takes only minutes. Agents can therefore dynamically evolve to

meet player objectives in relative real-time.

4.1.3 Games

The ANGELINA system attempts to create arcade-type games through the evo-

lution of game maps, object placement, and game mechanics [9]. These games are

then evaluated with different fitness functions for the different components, such as

a metric for map sparseness or the distribution of items to pickup or avoid. The

games are then themselves evaluated by being played with simulated players, such

as a null player, a randomly moving player, and one that uses a planning algorithm
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to maximize score. The authors present two evolved collecting games, which are

loosely based on existing game genres. The first is one where the player must avoid

wandering enemies and collect items for points as in the arcade game Pacman. The

second is a “steady-hand” game, where the player must avoid the walls and collect

items on a more maze-like map.

Evolutionary computing has also been used within game design. Tozour discusses

a process where games are repeatedly played by evolving AIs [60]. The game designer

can then periodically examine the evolved AIs, and determine if particular units or

strategies are overpowered. Hastings et al. use evolutionary processes in order to

procedurally generate weapons for their game [17]. Weapons within the game fire

projectiles in a pattern determined by an internal neural-net-like structure. When-

ever a player uses that weapon to kill an enemy, the fitness value of the weapon

increases. A new weapon is dropped when an enemy is killed. This new weapon is

an evolved version of weapons used by the player that have a high fitness value. In

this way, players can enjoy infinitely new content, where each new weapon is similar

to their established preferences.

4.2 Genetic Programming

In genetic programming, a solution to the problem is encoded into a tree-based

structure, which is acted upon by evolutionary operators. For example, a problem

may be to build a mathematical expression that calculates π. One representation of

this problem would be an expression tree. In this representation, constant or variable

input nodes would be at the leaves, and mathematical operators such as multiply,

divide, or trigonometry functions would be placed in internal nodes. Figure 4.1 shows

one such tree which represents the expression (2 + 10)− (cos 45 ∗ (45 ∗ 7)).

During evolution, potential evolutionary operators could recombine the tree by

switching subtrees or modifying nodes. Koza’s comprehensive work considers prob-

lems in a number of domains and provides complete frameworks [28]. These frame-

works include the recombination operators, fitness functions, and the domain-appropriate
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Figure 4.1: A binary expression tree

internal and leaf nodes, denoted as function nodes and terminal symbols respectively.

Our work aims to create a similar framework for the Battle for Wesnoth strategy do-

main.

As described in an earlier section, many chess-playing programs use a look-

forward search to evaluate possible moves. Hauptmann and Sipper employ genetic

programming in order to evaluate board positions in the end-game of chess where

few pieces remain on the board [18]. The authors make note of the fact that genetic

programming allows human knowledge to be represented easily in the functions and

terminals used. The AI using the evolved evaluation trees was able to draw against

a state-of-the-art chess engine. Later work studied the trees created, as well as iden-

tified terminals that were crucial to performance [19]. Behaviour trees were selected

for the present work for their similar readability potential. This will be demonstrated

in the results chapter where the evolved strategies will be studied.

Gross et al. use genetic programming to evolve weights to determine which board

positions should be expanded as well as the weights used to evaluate a board po-

sition [16]. A interesting innovation of theirs was to also evolve a program to de-

termine how many turns forward this search should be performed. Their results

showed that their evolved programs expanded only six percent of the states that an
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Alpha-Beta search would expand. This is a remarkable reduction in computational

resources, especially since the algorithm still performed with comparable play quality

to Alpha-Beta search.

A real-time strategy game may use weighted map overlays named influence maps

in order to weight areas of the map for the AI to attack or avoid. One way of creating

these maps is through the use of strategy trees to combine circles of various radii

and weights. Miles and Louis use this technique to evolve and study AI strategies

in a simple game where there are two attackers and one defender of a target [38].

The strategies of both the attackers and the defender were simultaneously evolved.

This allowed effective strategies to be countered by the opposing side within a few

generations. The authors also note that the use of one tree for each attacker may

not allow for team strategies to develop and that a single tree for both attackers may

produce a superior result. This idea of one tree for the entire side is present in our

work.

A variety of techniques can be employed to create intelligent characters (“bots”)

for first-person shooters. One approach uses a process very similar to case-based

reasoning, where a database of rules are stored linking game conditions with actions

that the bot should perform [50]. In this approach, when the bot is to take an

action, the area around a bot is first quantized into a grid. As conditions in the

database are also grids, the bot’s surroundings can be matched to a database row,

and the corresponding action can be taken. The actions a bot takes are evaluated

by a weighted difference between the damage done to the bot and the damage done

to the bot’s opponents during the game. The evolutionary algorithm then optimized

both the conditions and actions in the database, and produced bots that could defeat

the standard game bots by a large margin of health points. Further results showed

that only a few rules were integral to the bot’s performance, allowing precise insight

into the bot’s behaviour.

Case-based reasoning has also been used in real-time strategy games. In these

domains, conditions in the game world may trigger orders to build buildings, order
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troops, or research unit upgrades. These rules are generated by hand or by human

players and are placed into the database to be used by the AI. An evolutionary process

can then optimize these rules and provide an even stronger knowledge base [49].

A team strategy was submitted to the simulated soccer tournament RoboCup-97

that was created using genetic programming [36]. A soccer game is a highly com-

plicated domain, yet the terminals used were relatively simple and mostly consisted

of vectors to/from opponents and the ball. The authors present strategies part-

way through their evolution, which offers interesting insights into the evolutionary

process. An early strategy evolved was so-called “kiddie soccer” in which every team-

mate tried to head for the ball and kick it. Eventually, the strategy began leaving

teammates dispersed throughout the space in order to defend well. The study of

strategies from various generations in order to obtain domain knowledge will also be

seen in the present work.

4.2.1 Evolving Behaviour Trees

As discussed above, behaviour trees are a tree-based structure with conditions,

composite nodes, and actions. Similar to genetic programming trees, behaviour trees

also have internal nodes which dictate the flow of execution, as well as action nodes

to provide control or sensing information. Thus, behaviour trees are applicable to

be evolved using genetic programming techniques as in this work.

An application of evolving behaviour trees is in direct character control [44]. In

this work, the behaviour tree directs a character to run and jump throughout a level

based on the platforming genre of video games. This character control is achieved by

creating a map of the world to query through condition nodes, as well as action nodes

which mimic a human player’s button presses. A syntax grammar was created with

predefined patterns in order to regulate the subtrees created during evolution and

avoid invalid trees. The authors make special mention of the fact that the resulting

behaviour trees are human-readable, allowing for detailed examination as desired by

the video game industry.
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In the real-time strategy game DEFCON, 2 the player must co-ordinate the place-

ment of missile silos, radars, airbases, and fleets in order to wage global thermonu-

clear war against their opponents. Lim et al. employed genetic programming on

behaviour trees in order to optimize the placement of these offensive and defensive

elements [32] [33]. This was achieved by using multiple behaviour trees for various

sub-goals of the AI. For example, behaviour trees were created that controlled the

placement of radar towers. These towers detect enemy forces within a particular

radius, which makes their placement strategically important. The fitness function of

the evolutionary algorithm scored each behaviour tree based on how many enemies

were detected. Evolutionary operators similar to that in this work could then evolve

behaviour trees that detected an increasing number of enemies over the evolutionary

run. By combining a number of optimized behaviour trees for different sub-goals,

the authors produced a strategy that could defeat the built-in artificial intelligence

in fifty-five percent of battles.

2. Introversion Software, 2007
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Chapter 5

Problem Domain

This chapter will discuss the problem domain, which is a simplified version of

Battle for Wesnoth (abbr. Wesnoth), an open-source turn-based game. A brief

overview of Wesnoth will be provided, along with the historical context of the war

game genre. Special highlight will be given to the difficulties and complexity of this

domain which impact the effectiveness of the genetic algorithm. In particular, the

randomness of the domain and the removal of the recruitment aspect of Wesnoth

will be major issues raised in this chapter.

5.1 Battle for Wesnoth

Battle for Wesnoth is an open-source game, created by David White in 2003.

Wesnoth describes itself as a “turn-based tactical strategy game with a high fantasy

theme”. 1 This game was selected for its high quality of code and visuals, as well as

its representation of a wide class of modern computer games. A large community of

Wesnoth users and developers also provided this work with valuable game reference

material and technical support.

1. http://wiki.wesnoth.org/Description
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5.1.1 Turn-based Nature

For decades, war games have attempted to simulate the realities of battle in a

miniaturized and reproducible fashion [1]. In some versions, players move physical

representations of battlefield forces across a large room that symbolizes the battlefield

in order to learn tactics and other aspects of war. One defining feature of war games

is their use of randomness in their mechanics. This randomness simulates various

unknown effects in war and forces the player to adapt their strategy to unforeseen

outcomes. In this way, the player learns flexibility and resourcefulness. Battle for

Wesnoth is a direct digital successor to these war games and has the same emphasis

on tactics and randomness.

Battle for Wesnoth is similar to other war games and chess in that they all

simulate war between two or more teams, on a surface that is discretized into a hex

or grid pattern. Every turn, a team can move its units and attack other teams’ units,

according to various unit attributes and mechanics. After the team has moved their

units or otherwise passes their turn, control passes to the next team. This continues

until the game is over, as signalled by checkmate in chess and by one side losing all

their units in Wesnoth.

A section of a Wesnoth map can be seen in Figure 5.1, showing the hex-shaped

terrain which is historically common in war games. In this figure the two opposing

teams are coloured red and blue, with a red unit attacking a blue unit. One in-

teresting mechanic of Wesnoth is that the different terrain types of tiles will affect

the damage taken by units on those tiles. This interesting mechanic will be clarified

below.

5.1.2 Unit Actions

Drawing from other fantasy works, the dozens of units in Wesnoth have imag-

inative type names, races, and attributes. For simplicity, only one particular unit

type was selected for the experiments in this work. The relevant attributes of this
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Figure 5.1: Units fighting on a Wesnoth map

‘Dwarvish Fighter’ unit will be explained and related to the various game mechanics

of Wesnoth.

Movement

When a unit moves in Wesnoth, it spends movement points to move across tiles.

Depending on the terrain type and the unit, tiles take a varying number of movement

points. For example, the Dwarvish Fighter has four movement points, and will

expend one to cross a Cave tile and three to cross a Swamp tile. There are also

impassable tiles such as the Lava tile, which the Dwarvish Fighter cannot move onto

or across.

Attacking

Units in Wesnoth begin the battle with a particular number of health points based

on their unit type. The Dwarvish Fighter has 38 health points. This health value
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will be reduced through the attacking process, and cannot be restored as this work

has removed all mechanics to restore health. These simplifications are discussed in

Section 5.2.

Attacking is a relatively complicated process in Wesnoth, as it is dependent on

the random number generator in Wesnoth, the terrain mechanic, and various unit

attributes.

The attacking unit A must be directly adjacent to its target T , and must not

have already attacked that turn. A will then directs a number of strikes against T ,

potentially connecting and doing damage. After each one of A’s strikes, whether it

connects or not, T will make a counter-strike against A.

Whether a strike or counter-strike will connect or not is based on the terrain type

of the tile T is on. Terrain tiles have defence ratings representing how often a strike

will fail to connect, as determined by the random number generator within Wesnoth.

For example, a Dwarven Fighter has a defence rating of 30 percent on a Forest tile,

meaning that a strike has a 30 percent chance of failing to connect. In contrast, a

Cave tile has a higher defence rating of 50, forcing strikes to miss 50 percent of the

time. Therefore, terrain is a crucial part of any Wesnoth strategy.

Attack Name Num. Strikes Potential Damage Damage Type

Axe 3 7 Blade

Hammer 2 8 Impact

Table 5.1: Two attacks of the Dwarvish Fighter

A unit may have a multitude of different attacks, each with a different number

of strikes per attack, and damage potential. The attacks for the Dwarven Fighter

are seen in Table 5.1. If A selects the axe attack, A will launch three strikes against

T . For each strike that hits T , a maximum of seven damage is taken away from

the health of T . The hammer attack will similarily allow two strikes with eight

damage maximum. This maximum damage is modified by T ’s resistance to that

damage type, lowering the amount of damage done. For example, a unit may have
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10 percent resistance to the Blade damage type, which would reduce Blade damage

taken by 10 percent. Attack type selection is automatically determined in Wesnoth,

based on each attack’s estimated damage to the target.

This randomized fighting mechanic has caused much discussion and disagreement

within the game community about the effects of randomness on Wesnoth’s game-

play [63]. This randomness also affects which techniques can be used to create an

artificial intelligence for Wesnoth. Unlike the deterministic nature of chess, searching

for optimal moves may be infeasible. An attack with three strikes and three counter-

strikes creates the possibility of 16 different outcomes depending on how many strikes

connect. This branching factor may make it impossible to examine a large number

of turns ahead in the battle.

5.2 Simplifications Made

To order to manage the complexity of Wesnoth, a number of game features were

removed or simplified for this work. It must be re-stated that the objective was not

to create viable strategies for the entirety of Battle for Wesnoth, but of a suitably

complicated turn-based game. Thus while important mechanics of Wesnoth were

removed, the core game mechanics of moving, attacking, and terrain defence remain.

These removed topics are mentioned here for completeness and as possible topics for

future work.

5.2.1 Unit Recruitment and Economy

A normal multiplayer game in Wesnoth begins with each team receiving a leader

unit and a quantity of gold. The leader stands on special recruitment tiles and

purchases units of differing types to move around the map and attack other teams.

In order to recruit more units, gold must be obtained. Two gold is given to a team

when they begin their turn, and special ‘village’ tiles also produce gold every turn

when they have been captured. A team captures a village by moving a unit onto it.

In this way, players must manage their gold economy by recruiting units to fight and

secure villages.
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As noted above, this economic aspect of the game was removed. This was done

to focus on the particulars of moving and attacking which is perhaps applicable

for a wider variety of tile-based games, rather than the Wesnoth-specific actions of

capturing villages and making recruitment decisions.

5.2.2 Other Mechanics Removed

Resting

If units do not move or attack for a turn, they are considered as resting and

will be healed by two health points at the end of the turn. This mechanic was

removed in order for the health of both teams to monotonically decrease.

Healing and Poisoning

Spellcasting units may use special actions to restore health or cause damage

every turn through poison effects. These actions were removed to prevent

healing as above, and for direct unit-to-unit attacks to be the only damage-

dealing mechanism.

Levelling

Units gain experience points when defeating enemies. Upon obtaining enough

experience points, units level up, which restores their health and increases other

attributes. Again, this was removed to ensure that the health points of units

only decreased.

Time of day

Wesnoth simulates a time of day for the battle, changing from dusk to afternoon

to evening every few turns. This provides a bonus for some races of units

and penalties for others. For example, Undead units will do 25 percent less

damage during the day. The time of day was fixed at afternoon throughout all

experiments so that attack damage was consistent throughout the battle.

Random traits

Units receive random traits when recruited or otherwise placed on the map.

Examples include Strong which gives extra damage per strike and one extra
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health point, and Quick which gives one extra movement point but removes

five percent of the units’ maximum health points. Random traits were removed

in order to ensure that both teams were equal in strength and ability.
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Chapter 6

Methodology

This chapter discusses how the evolutionary computing process was modified for

the Battle for Wesnoth domain. In particular, the representation, modification, and

evaluation of strategies will be presented. Fitness functions and other metrics will

be introduced to measure the strength of strategies within a Wesnoth battle against

another strategy.

6.1 Strategy Representation

As mentioned in an earlier chapter, a behaviour tree typically represents the

artificial intelligence for a single character. In this work, a behaviour tree has been

generalized into a team strategy. On a team’s turn, every unit on the team queries

the behaviour tree and performs the actions if possible. The choice to use a single

tree for the entire team was motivated by the work of Miles and Louis [38].

This section discusses specific modifications that were made to the behaviour

tree framework to allow strong strategies to develop through evolution. Domain-

specific actions were created to be used in a modular way, ensuring that genetic

recombination led to valid strategies.
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6.1.1 Node Overview

Three important details of the behaviour tree system are discussed here. The first

detail is the use of an attribute table within each node to control node behaviour.

The next detail of interest is the use of a blackboard structure, which centralizes data

for use by all nodes in the behaviour tree. Finally, a list-based data format is used

for all data processing within the behaviour tree.

The attributes in a node parametrize the behaviours of that node. For example,

two attributes in the Sort node define the sorting behaviour of that node. These

attributes are described for each node type below. This attribute system was done to

reduce the number of nodes to be implemented, as well as provide a simple mechanism

for mutating a node as described below.

A blackboard is a structure used by an artificial intelligence to share information

among components [39]. In this work, the blackboard is used to share data amongst

all nodes in a unit’s behaviour tree. When a unit queries their behaviour tree at the

beginning of each turn, the blackboard is initialized to contain only the unit itself.

The implementation of the blackboard is a stack-based structure where nodes in the

tree may access the last object in the stack. For example, the Sort node will use the

last object on the blackboard as input, sort it if applicable, and then add it back to

the blackboard.

The data placed on the blackboard and accessed by nodes is list-based, and

composed of objects representing Wesnoth units and tiles. By defining a common

data structure to be used, each node can robustly handle all input. Consequently,

a wider range of behaviour trees are syntactically valid at least, if not semantically

valid. This is important to avoid computationally-wasteful invalid strategies.

6.1.2 Composite Nodes

The two composite nodes used in this work were the Sequence and Selector

nodes as described in Section 3.2.1. Both nodes were given an attribute to control

whether children would be evaluated in a particular order or in random order.
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The Sequence node was also given a special attribute ignoreFailure that would

prevent the node from returning when a child returned false. This property thus

forced the Sequence node to evaluate all children before returning true. This at-

tribute was created so that hand-built strategies could perform actions despite having

subtrees that occasionally fail to perform their actions.

6.1.3 Action Nodes

The selection of appropriate Action nodes for the formalism was determined by

three influences. The first was by studying sample Wesnoth AIs provided by the

community in order to encapsulate them into logical steps. The second influence

was by examining what actions were available in the Wesnoth code itself. Finally,

the third influence was the blackboard and list-structure, which necessitated creating

nodes to manipulate the blackboard structure.

In accordance with these influences, explicit Condition nodes were not used.

Action nodes simply return true if they successfully complete their action, and false

if they fail for any reason including invalid input. If applicable, the input to nodes is

the last object on the blackboard. As this object may be a list of other objects, and

most nodes do not operate on lists, the last object in the list will be taken as input

in this case. For example, a GetUnits node, when queried, will place a list of units

on the blackboard. If an Attack node is then queried, the input object will be the

last unit in this list. This list-based design was created for modularity, as all data

then has a unified format.

A list of the nodes created can be found in Table 6.1. The entry for each node

contains the restrictions on the input data, the actions the node performs, and a

description of the output object to be placed on the blackboard if any. Nodes may

perform multiple actions, which is indicated by a describing name on the action. Note

that some nodes are fairly permissive in their input. For example, the GetUnit node

accepts all objects that have a x and y coordinate. This includes both tile objects as

well as unit objects. As with other implementation decisions, this non-discrimination

was done to allow as many strategies to be valid as possible. As mentioned above,
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if the input is not as specified, or if the action is unable to be taken, the node will

return false to its parent. If the action was successful, the node returns true.

Table 6.1: Action nodes created

GetUnit

Input Accepts an object with x and y coordinates

Action Examines the game map at that x and y for a unit. If there

is one, it will be placed on the blackboard

Output A unit object if found

GetTiles

Input Accepts an object with x and y coordinates

GetReachable If the object is a unit, find all tiles that the unit can move

to within one turn. If the object is not a unit, the adjacent

action will be performed.

GetAdjacent Find all tiles directly adjacent to the object’s x and y position

Output List of tiles

GetUnits

Input None

Action This action depends on the value of the side attribute within

the node. This node can either create a list of units that are

on the same or opposing team of the querying unit

Output List of units

Pop

Input None

Action Pops the last object off the blackboard

Output None
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SetOperation

Input Takes the two top-most objects on the blackboard, which must

be lists. False is returned if either object is null or not a list

Union Creates a new list of the union of objects from both input lists

Intersection Creates a new list of objects that are found in both input lists

Output The created list

Sort

Input Accepts any object

Action Sorts the object depending on a number of sorting functions.

These are by health points, movement points, distance to

querying unit, and defence rating. The first two are only ap-

plicable to units, and the last to tiles. If the object is not of

the correct type, false is returned.

Output The sorted list, or the original object if it was not a list

Attack

Input Accepts an object with x and y coordinates

Action Directs the querying unit to attack the x and y coordinates.

This attack will fail if the coordinates are not adjacent to the

attacking unit, or if the unit is directed to attack themselves or

another teammate. These failure conditions are automatically

determined by Wesnoth. The return value of this node will

be whether the attack order succeeded or not

Output None
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Move

Input Accepts an object with x and y coordinates

Action Directs the querying unit to move to these coordinates. If the

object is a unit, the move coordinates will be the closest open

tile to the object. The return value for this node is whether

the move order was successful or not

Output None

6.2 Evaluation

In order to assign a fitness to each strategy, strategies were evaluated within an

instance of Battle for Wesnoth. First, the strategies are converted into the format

used by the Wesnoth AI. Then a number of Wesnoth instances are run, with each

strategy in the population battling against the default AI. In this work, instances

were run in parallel to decrease the time taken for each generation to about four

seconds. The output produced by each instance is then parsed to obtain a fitness

value for the strategy that was evaluated by that instance. This fitness value is then

used by the genetic operators to create a new generation of strategies. This process

then repeats, as shown in Figure 6.1.

6.2.1 File Format

Behaviour trees are represented within the evolutionary algorithm as an XML

file, as in Lim’s work [32]. The tree-like structure of XML allows genetic operators,

such as moving subtrees between individuals, to be easily defined and implemented.

Another advantage is that XML is human-readable, allowing easy examination of

the behaviour trees produced.

In order to be evaluated within Wesnoth, each strategy must be transformed

into a Lua file. This is a straightforward translation operation which re-creates the
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Strategies in Lua format

Parallel instances of Wesnoth
Strategies in XML format

Step 1: Convert
strategies to Lua format

Step 2: Evaluate each
strategy in Wesnoth

Step 3: Assign fitness
values to each strategy

Step 4: Use genetic
operators to create new
generation of strategies

New generation of strategies

Step 5: Repeat process
with new generation

Figure 6.1: Diagram of evolutionary algorithm

(a) XML format (b) Lua format

Figure 6.2: SDefence in two data formats

tree using behaviour tree class nodes defined within Lua. An example of SDefence, a

hand-built strategy, is seen in both XML and Lua formats in Figure 6.2.

6.2.2 Collecting Output

Once created, each Lua strategy file is then passed to an instance of Wesnoth

through a command-line argument. In order to speed up the evaluation process, 16

strategies are evaluated at once. The computer that produced results for all tests

was an Intel Core i7-3820 CPU with 8 processors at 3.60 GHz running Ubuntu 13.04.

The map used for the genetic algorithm process was a modification of a built-in

multiplayer Wesnoth map, and can be seen in Figure 6.3. It is also suggested as an

artificial intelligence testing map by the game’s developers. However, as mentioned

above, all villages were removed from the map before the experiments were run, so

that the default AI was not influenced by their presence.
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Figure 6.3: The AI testing map

A turn limit was placed on each battle in the case a winner did not emerge.

This occurred occasionally when the default AI would fail to make any actions. The

reason for this is unknown, but is potentially related to the removal of villages or the

gold economy mechanic. When the turn limit was reached, the winner was selected

as the team with the highest health sum. As battles that completed normally took

around seven turns on average, the turn limit was set to be twenty turns.

When a Wesnoth instance finishes executing, its textual output is fed as input

into a fitness function program. This program then outputs a numerical fitness

value, which is placed into the XML file for the strategy which was evaluated in

that Wesnoth instance. The genetic operators described above can then operate on

these XML files to produce strategies for a new generation. A number of fitness

functions may be used, and may have a large impact on the results produced by the
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evolutionary algorithm. Therefore, a number of fitness function experiments were

conducted, and will be discussed in the following chapter.

6.2.3 Parameter Selection

One issue for studying evolutionary algorithms is the large number of parameters

that can be changed. For example, the fitness function, population size, number

of generations, and the number of trees created through crossover can all affect

the performance of the genetic algorithm. While this author acknowledges that

exhaustive tests should be conducted to isolate the effects of every parameter, it

was decided that other experiments were more relevant to this domain. Therefore,

recommended parameter values will be based on work such as from DeJong [10].

When available, values will be used based on preliminary experiments. Brief notes

throughout this section will also discuss rationale for the parameter values selected.

6.2.4 Fitness Function

The winner of a battle is directly determined by the health of units on a team,

whether the battle finished normally when all units on a team are defeated, or when

an artificial winner is declared when the turn limit is reached. Therefore, the fitness

function used was based on the difference in health between the two teams at the end

of the battle. This metric has been previously seen in the literature [37][34]. Other

fitness functions are explored in the next chapter.

D =
∑

(ULast
health|U ∈ Team1)−

∑
(ULast

health|U ∈ Team2)

Equation 6.1. Health difference function

Equation 6.1 shows the health difference formula, to be calculated on the last turn

of the battle as denoted by Last in superscript. The health difference D calculates

the difference between the sum of each team’s health. Therefore, a positive D means

that team 1 had a greater health sum than team 2, and vice versa. This D value will
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be used to define a performance gain metric in the next chapter, which determines

the increase in performance attributable to evolution.

6.3 Recombination

This section will detail the genetic operators used for the recombination of be-

haviour trees. As described above, the three main recombination operators are selec-

tion of strong solutions, crossover between two solutions, and mutation of solutions.

A discussion will follow concerning the lack of a repair operator in this work.

6.3.1 Selection

The elite, tournament, and roulette selection operators described in an earlier

chapter were used in this work, and are used to select strong individuals to be copied

into the next generation. Each selection operator generates a certain amount of new

individuals for the next generation. This amount is controlled by experimentally

determined parameters, which are seen in Table 6.3. For instance, the tournament

selector generates 25 percent of the new generation’s individuals, minus one individ-

ual, which is selected through the elite operator. The remainder of the population

is created by using the crossover operator, as explained below. The number of tour-

nament rounds performed within the tournament operator was set to be four. This

value was experimentally chosen to select individuals with high fitness.

Table 6.3: Parameters for creation of new generation

Operator New Indiv. Created

Elite 1

Roulette 25% of new pop.

Tournament 25% of new pop. - 1

Crossover 50% of new pop.
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6.3.2 Crossover

The purpose of a crossover operator in evolutionary computing is to propagate

elements of strong solutions throughout the population. As stated above, these

operations are representation-specific. One advantage of using a tree-based repre-

sentation is that a standard crossover operation is found in the literature [28]. As

implemented in our work, two parent trees are selected using the roulette method.

Then, a randomly chosen subtree on each tree is swapped to produce a new indi-

vidual. As mentioned above, fifty percent of the new generation is created through

this crossover operator. This value was experimentally selected based on preliminary

experiments.

6.3.3 Mutation

Mutation was applied to the behaviour trees in order to search other points in

the solution space. Three mutation operators were defined in this work, and will

be explained below: adding a new node, removing a subtree, and modifying the

attributes of a random node.

In the experiments conducted each behaviour tree had a random one-in-ten chance

of being selected for mutation. This value is suggested by the literature based on

DeJong’s criteria of value = 1/N where N is the population size [10]. In order to

control the mutation process, a number of parameters were defined. When a tree is

selected for mutation, a random choice is made to determine which one of the above

mutation operators takes place. This was done to weight the evolutionary algorithm

towards growing the behaviour trees, rather than growing and shrinking equally. This

consideration was required for a later experiment, which evolved strategies from a

null strategy, as discussed later. Table 6.4 shows the weighting for each operator.

Addition

This mutation operator adds a new child node to a random node in the behaviour

tree. This operator is important in order to add complexity and new functionality

to trees. This operator is implemented by first choosing a random composite node
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Table 6.4: Mutation operator weights

Operator Chance for Selection (%)

Addition 60

Removal 10

Modification 30

in the tree to add a new child node to. Adding a child to a non-composite would

create a syntactically-invalid tree. Therefore, this is avoided.

The second step in the addition process is to assign an abstract node type to the

child node. This type is selected as a random choice between composite or non-

composite. Third, the concrete node type is selected. For example, if the new node

is composite, there is a fifty-fifty chance of being a Sequence node or a Selector

node. For the non-composite nodes, there are eight node types as defined earlier in

this chapter which are equally weighted for selection. Finally, the child node is given

random attribute values.

Removal

Another mutation operator is to remove a random subtree. All nodes and their

subtrees are available for removal excluding the root.

Modification

The final mutation operator is to modify the attribute of a random node in the

tree. This is performed by selecting a random attribute of the node. A new value

for the attribute is then randomly chosen among the valid values of that attribute.

6.3.4 Repair

The above crossover and mutation operators have been constructed so that syn-

tactically invalid trees cannot be produced by the evolutionary algorithm. Therefore,

an explicit operator to repair the tree is not needed. As mentioned above, syntac-

tically valid trees are desirable to avoid evaluating strategies that will fail or are
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otherwise incorrect. Future work may consider the identification and repair of se-

mantically invalid trees, which have nodes in combinations that produce no valuable

results. For example, a tree consisting only of composite nodes is syntactically valid,

but semantically invalid.
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Chapter 7

Experiments and Results

This chapter will demonstrate the results of evolving game-playing strategies

through a number of different experiments. The criteria for measuring strategy per-

formance will be defined, providing the ground for measuring the improvement of

evolved strategies against the baseline results. Evolved strategies will also be ex-

amined in-game, with critical discussion focusing on the generality of these results.

Further experiments will consider the use of various fitness functions for the evolu-

tionary algorithm, as well as the effects of randomness on evolution.

7.1 Baseline Strategies

In order to measure any possible improvements obtained from evolving strategies,

it is necessary to first measure the performance of baseline strategies. Three types of

strategies were evaluated for these results. A null strategy was evaluated to determine

the effects of randomness on evaluation, hand-built strategies were created to identify

strong strategies, and the default game AI was tested as the primary opponent.

7.1.1 Null Strategy - SNull

The Null strategy is a behaviour tree consisting of only a Sequence node, as seen

in Figure 7.1. When evaluated, no action will be taken. This strategy was tested
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Sequence0
ignoreFailure = true

Figure 7.1: SNull behaviour tree

to indicate the effects of randomness on the battle, as any win by this strategy will

be solely attributable to randomness. This strategy contains a node solely for the

purposes of seeding evolution with the null strategy, as described in a future section.

7.1.2 Hand-built Strategies

Three behaviour trees were hand-constructed in order to obtain benchmark re-

sults, as well as to provide starting trees for later seeding experiments. The first two

strategies direct the unit to attack the closest unit or the weakest unit, while the

third strategy takes the mechanic of terrain defence into account.

Attack-Closest Strategy - SClosest

The Attack-Closest strategy directs the unit to attack the closest unit. The

behaviour tree can be seen in Figure 7.2a. The root node is a Sequence node that

queries its children from left to right. The node also ignores any false values returned

from the children, providing increased flexibility to any strategies that evolve from

this strategy. This evolution is seen in a later experiment. The GetUnits node

returns a list of enemies for the Sort node to sort by decreasing distance. The second

Sequence node then directs the unit to Move and then Attack the last unit in the

list. Therefore the closest enemy unit is targeted, moved to, and attacked.

Attack-Weakest Strategy - SWeakest

The Attack-Weakest strategy is very similar to the Attack-Closest strategy, as

seen in Figure 7.2b. However in the Attack-Weakest strategy the Sort node orders

the units by health points instead of distance. Therefore, the weakest enemy unit is

selected to be attacked.
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Sequence0

GetUnits00
side = enemies

Sort01
compareFunction = distance

order = highToLow

Sequence03
ignoreFailure = true

Move030 Attack031

(a) SClosest

Sequence0

GetUnits00
side = enemies

Sort01
compareFunction = distance

order = highToLow

Sequence03
ignoreFailure = true

Move030 Attack031

(b) SWeakest

Figure 7.2: Behaviour trees for two hand-built strategies

Defence Strategy - SDefence

The Defence strategy is slightly more complicated than the other hand-built

strategies, as it evaluates the defence rating of map tiles when selecting a tile to

move to. It is shown in Figure 7.3. The first two nodes obtain a list of the unit’s

enemies, and sort them by health in descending order. This list is then placed on the

blackboard, as mentioned in Chapter 6. The next node finds the adjacent terrain tiles

to the last unit in this blackboard list. These tiles are then sorted by their defence

value and then the unit is moved to the tile with the highest defence. Finally, the

unit is directed to attack the weakest enemy. Therefore, the unit should move to the

tile with the highest defence value that is adjacent to the weakest enemy, and then

attack that enemy.

Sequence0

GetUnits00
side = enemies

Sort01
compareFunction = healthPts

order = highToLow

GetTiles03
tileType = adj

Sort04
compareFunction = defence

order = lowToHigh
Move06

GetUnits07
side = enemies

Sort08
compareFunction = healthPts

order = highToLow
Attack010

Figure 7.3: SDefence behaviour tree

Default Artificial Intelligence - SDefault

Battle for Wesnoth contains its own custom artificial intelligence (AI) built by

the Wesnoth community to challenge the player. This AI has the ability to capture

villages, recruit units, and some limited coordination of unit movement. As noted, as
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the recruitment and gold economy aspect of the game has been removed, the default

AI may not be playing at its full strategic potential. However, the default AI does

consider such mechanics as a unit being surrounded, the defence values of tiles, the

expected damage to be taken from an attack, and a measure of value of a target.

Thus, this AI is expected to perform well even with multiple domain mechanics

removed. As the default AI is written in the C++ programming language, it is not

available to be displayed as a behaviour tree.

7.1.3 Baseline Performance

The initial performance metric examined will be the percentage of games won

in a number of battles between two strategies. In Table 7.1, each entry is the win

percentage of the strategy in that row versus the strategy in that column. For

instance, the top row is the win percentage for SNull against the other strategies, and

can be seen to be quite low. On the map that evolution took place on, teams can start

on the south side or the north side of the map. Strategies were therefore evaluated on

both sides in order to account for any bias in the game map. In Table 7.1a, the entry

denotes the win percentage when the strategy in that row was placed on the south

side of the map. For example, the top row in this table shows results for when SNull

controlled the team on the south side of the map. Conversely Table 7.1b contains

results from the battles where the strategy in that row was placed on the north side

of the map.

The results were collected by 800 games between the two strategies. For each

battle, Wesnoth’s random number generator was seeded with a different number.

This was done to examine a large number of possible outcomes for each battle.

The diagonal of Table 7.1 is highlighted in bold, and shows the results of strate-

gies evaluated against themselves. The SNull versus SNull entry is empty as neither

strategy performed an action. Other entries show that strategies playing against

themselves win within 50 percent of the time, which includes a noted variance of

about eight percent. This self-play result indicates that neither starting position has
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Table 7.1: Performance results for baseline strategies

(a) On south side of map

- SNull SClosest SWeakest SDefence SDefault

SNull - 11 10 3 14

SClosest 87 43 38 21 35

SWeakest 90 74 49 22 38

SDefence 97 70 77 46 58

SDefault 84 76 69 58 53

(b) On north side of map

- SNull SClosest SWeakest SDefence SDefault

SNull - 13 10 3 16

SClosest 89 43 26 30 24

SWeakest 90 62 49 23 31

SDefence 97 79 78 46 42

SDefault 86 65 62 42 53

an advantage. Another interesting observation is the disparity between some strate-

gies starting on the south and north sides of the map. For instance, when SClosest

battles against SWeakest, SClosest wins 38 percent of the time when it started on the

south side of the map in Table 7.1a, but only 26 percent when it started on the north

side in Table 7.1b. This disparity does not arise in every result, but seems to arise

out of the interactions of strategies with the map.

The results for SNull show it does lose the majority of battles, as expected. Curi-

ously, the null strategy does win more often against the default AI than against the

hand-built strategies. This may be due to the aforementioned issue of the default

strategy occasionally stopping its actions. If this occurs the null strategy may tem-

porarily have a higher team health depending on the random numbers used in the

battles. In this case, the null strategy would be declared the winner of the battle.
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The SClosest and SWeakest hand-built strategies perform quite well for being so

simple. These strategies defeat the SNull a majority of the time, but lose to the more

sophisticated hand-built defence strategy and the default strategy. The SWeakest

strategy is also stronger than the SClosest strategy. This was expected as it is a

tactically wise choice in this domain to attack the weakest enemy.

SDefence also wins a majority of the time against the null strategy and tends to win

against the other hand-built strategies. It also defeats the default strategy 58 percent

and 42 percent of the time on the south and north side of the map respectively. This

was an unexpected result, as SDefault was assumed to be a superior strategy to any

hand-built strategy. However, this performance may also be slightly increased due

to the issue of the default AI ceasing to issue further orders. As mentioned, it is not

known why this occurs, but it is theorized that the removal of the recruitment and

gold economy mechanic may be causing this issue.

7.2 Evolving Strategies

This section discusses the evolution of strategies and their comparison to the

baseline results. Strategies will be evolved from the null strategy, randomly-created

strategies, and from a population seeded with the hand-built strategies. The evolu-

tion from the null strategy will be shown in detail, discussing the evolution process as

well as metrics of strategy performance. In all evolution experiments, the opponent

will be the default Wesnoth AI, denoted as SDefault. All evolutionary runs took less

than 110 minutes to complete.

In the following evolution experiments the random number seed, used to initialize

Wesnoth’s random number generator, was the same for every battle. This was done

to encourage the strategies to optimize against a relatively fixed target. Later ex-

periments will show the effects of changing these seed every generation of evolution,

as well as changing the seed for every battle. The evolved strategy was also fixed

to be placed on the south side of the map in each battle. Again, this was done to

lower the amount of noise in the evaluation of strategies. The population size for
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all evolution was 16, as this was a multiple of the number of cores available on the

system, reducing the time required per generation. Other evolutionary parameters

can be found in the preceding chapter.

7.2.1 From Null Strategies

In this section, the results are presented for the evolutionary algorithm attempting

to evolve an population of null strategies. This experiment demonstrates how quickly

evolution can produce viable strategies, and also how metrics can be used to verify

that evolution was a success.

Evolution

Two evolution runs will be presented here. The first run is where the evolved

strategy is always on the south side of the map, while in the second run the evolved

strategy randomly switches between sides of the map. This was done in order to ex-

amine if restricting the strategy to one side would increase evolutionary performance.

Again, the opponent strategy is set as SDefault.

(a) Fixed to south side of map (b) Randomly switched sides of map

Figure 7.4: Fitnesses of SNull evolution

Figure 7.4 shows the maximum and average fitness of the population over 250

generations. The gray lines above and below the average fitness demonstrate the
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fitness range from the maximum fitness of the population to the minimum fitness.

The maximum and average fitness are higher in Figure 7.4b, which suggests that

stronger strategies were evolved. Note that in earlier generations, changes caused the

average fitness to decrease but these changes were discarded from the population.

At different points in the two evolution runs, an individual arose in the population

that had a slightly higher fitness. The algorithm could then propagate that change

to other individuals. Recombination could then lead to further increases in fitness.

It is also interesting to note that fit individuals which had the highest maximum

fitness were sometimes lost from the population. Even though elite selection carried

that individual forward into the next population, subsequent mutation likely lowered

its fitness. Therefore, it is important to save the highest-fitness solutions from the

evolution process.

As discussed above, the stopping criteria of the algorithm was 250 generations,

which was experimentally selected to facilitate rapid experiments. Although the

maximum fitness increased throughout these evolutions, it is unclear if the improve-

ment would continue. However, it is encouraging that the evolution runs shown only

took about 96 minutes each, making longer or repeated runs practical.

Performance

After evolution, the strategies with the top fitnesses from the evolution process

were selected to be evaluated against the hand-built and default strategies. In this

work, only one or two strategies were evaluated. In sorting by fitness value, most of

the top strategies were almost identical due to the elite evolutionary operator. This

may be disadvantageous, as it may be more informative to select varied strategies

by comparing their structure or function.

The first two strategies in Figure 7.5 are from the first evolution run, where

the evolved strategies were fixed to the south side of the map. Figure 7.5a shows

a strategy from generation 162 (SA-Gen162), while Figure 7.5b is a strategy from

generation 176 (SA-Gen176). The third strategy SB, in Figure 7.5c, is from the second
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Move05

(a) SA-Gen162

Sequence0
ignoreFailure = true
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tileType = adj

GetTiles02
tileType = adj
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GetTiles04
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tileType = adj

Move06
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tileType = adj
Move08

GetTiles09
tileType = reachable

(b) SA-Gen176

Sequence0
ignoreFailure = true

GetTiles00
tileType = reachable

Attack01
GetTiles02

tileType = reachable
GetTiles03

tileType = reachable
Move04

GetTiles05
tileType = reachable

PopFromParent06
Selector07

order = normal
PopFromParent08

GetTiles09
tileType = reachable

Move070

(c) SB

Figure 7.5: Three behaviour trees evolved from SNull

evolution run, where the evolving strategies were placed on a randomly chosen side

of the map.

The results of the evaluation process can be seen in Table 7.2. As before, Ta-

ble 7.2a is the win percentage of a strategy when placed on the south side of the

map, compared to Table 7.2b when the strategy was evaluated on the north side

of the map. These results show that the evolution was successful, as the evolved

strategies perform much better against the other strategies than SNull. As SA-Gen162

and SA-Gen176 had a fixed role on the south side of the map during evolution, it is

unsurprising that their performance suffers when they are placed on the north side.

Comparing SA-Gen162 and SA-Gen176, it is interesting to note that the strategy from

the later generation is stronger against SDefault, but is much weaker against the other

strategies. This suggests that SA-Gen176 may be over-specialized against SDefault.

As SB randomly switched map sides during evolution, it developed a robust strat-

egy that is able to defeat most other strategies. However, it should be noted that

SB is still relatively weak against SDefault when evaluated on the north side of the
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Table 7.2: Performance of strategies evolved from SNull

(a) On south side of map

SClosest SWeakest SDefence SDefault

SNull 11 10 3 14

SA-Gen162 68 61 33 33

SA-Gen176 83 69 35 86

SB 72 71 64 89

(b) On north side of map

SClosest SWeakest SDefence SDefault

SNull 13 10 3 14

SA-Gen162 71 61 45 19

SA-Gen176 18 23 11 27

SB 57 60 57 36

map. The statistical significance of these results will be examined before strategies

are discussed in depth.

Statistical Significance

As noted above, there is an element of variance in the win percentages of a

strategy. This is because the randomness in a domain directly affects the results of

actions within the battles. Therefore, a direct comparison of win percentages may

be unsuitable to declaring that evolution has successfully occurred. A performance

improvement metric will be defined here that is robust to randomness.

The fitness function used in the evolution algorithm is described in the last chap-

ter. It produces a D value, which is the difference in health between the two teams at

the end of a battle. The D values can be recorded from each battle in an evaluation

of two strategies. After a large number of such battles, these D values form a normal

distribution around some mean with high confidence. If the mean is less than zero,

the first team is weaker on average than the second team, and vice versa.
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Therefore, the hypothesis of this new metric is that the mean of the distribution

represents how strong the strategy is. Strategies with statistically significant changes

in mean are meaningfully weaker or stronger. If evolution produces a strategy with

a shifted mean compared to the initial strategy, then that evolution run will be

declared successful.

(a) D histogram for SA-Gen162 (b) D histogram for SA-Gen176

Figure 7.6: Comparison of D values for evolved strategies

As mentioned above, a distribution of D values is obtained when battling two

strategies repeatedly. Figure 7.6a shows the distribution of D values given by the

evaluation of SNull versus SDefault on the left-hand side of the figure. The D distribu-

tion given by the evaluation of SA-Gen162 versus SDefault is slightly to the right. Both

distributions are normal with high confidence, and with statistical significance the

mean moves from -27 to -9. 1 This result means that it can be stated that SA-Gen162

is a stronger strategy than SNull, and that evolution has been successful.

Figure 7.6b shows another histogram with SA-Gen162 versus SDefault. The shift in

means is even more pronounced here, as the mean has shifted from -27 in the first

1. Statistical significance given by a T-test. P < 0.05
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distribution to 24 in the other. Again, this shift is statistically significant, showing

evolution has been successful in producing a stronger strategy. 2

Examining the Behaviour Trees

Through the study of the evolved strategies, it may be possible to learn new

information about the problem space. This could be in the form of a novel strategy

or possibly an unintended or unbalanced design decision.

The first two strategies in Figure 7.5 above are relatively simple strategies that

exploit a combination of the GetTiles action and the Move action. The GetTiles

node has been previously explained in Table 6.1, and is intended to create a list of

tiles around a location or unit that it retrieves from the blackboard. This new list

of tiles will be placed on the blackboard as well. Therefore, if two GetTiles nodes

are evaluated after another, the first node will place a list on the blackboard, which

will be input to the second node. Per the specification of the GetTiles node as

described in the last chapter, the second node will return tiles around the last object

in this list. Therefore, a repeated string of GetTiles nodes will continually return

tiles farther and farther away in a particular direction. The unit will then move to

the last position on the blackboard. This movement style was an emergent strategy,

unforeseen in the design of the action nodes.

The implementation of the GetTiles nodes within Lua and Wesnoth mean that

the last tile in the list placed on the blackboard will be the tile directly up and to

the left of the input location. Therefore, SA-Gen162 will move the unit approximately

two units in the up-left direction while SA-Gen176 will attempt to move the unit

approximately six tiles. Impassable terrain tiles may make this movement distance

change slightly.

SB is slightly different in its orders. The first two nodes order the querying unit

to attack an adjacent tile. This shows the utility of the ignoreFailure attribute in

the Sequence node at the root. As this attack will most likely fail, the strategy may

still be viable by ignoring the return value. The strategy then queries two GetTiles

2. P < 0.05
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nodes, placing a number of tiles, centered two tiles away, on the blackboard. The

unit is then ordered to move to the last tile in the list, as mentioned above. The rest

of the nodes in this strategy have no function. Therefore, this Attack node is most

likely the crucial action in this strategy.

In-game Strategy

The three evolved strategies can be seen battling the default AI in a Wesnoth

screenshot in Figure 7.7. The figures on the left are where the evolved strategy is

starting on the south side of the map, and is controlling the units in red. Similarily,

the figures on the right are where the evolved strategy controls the units in blue,

who have started on the north side of the map. 3

In Figure 7.7a, the evolved strategy SA-Gen162 orders two units to move to highly

defensible territory. The two units in the lower right are on ground and mountain

tiles, providing a defence value superior to immediately adjacent tiles. As a reminder,

the defence value of a tile is the chance that an attack towards that tile will miss.

Therefore, these units have a lower chance than their enemy of being hit by attacks.

This leads to an increase in the probability of winning the battle. In Figure 7.7c,

SA-Gen176 moves all of the units into a bottlenecked area. The unit defending the

bottleneck has a much higher defence value then its attackers, again resulting in

improved performance.

When these two strategies are being queried by teams which start in the northern

area of the map, these strategies are counter-productive. The bottleneck is found

up-left of the southern starting position, and is mirrored to be down-right of the

northern starting position. Therefore, these strategies are commanding units to move

away from the bottleneck. The results of the strategies can be seen in Figures 7.7b

and 7.7d. Strategy SA-Gen162 moves the units up-left to flat land near some shallow

water in Figure 7.7b. Strategy SA-Gen176 attempts to move the units even farther,

but the movement node incorrectly handles the impassable tiles. This error leaves

the unit standing in the shallow water, which has an extremely low defence rating.

3. The opposite team colours were used in Figure 7.7f
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Thus, strategies that are optimized for the south side of the map perform extremely

poorly on the north side.

SB is a strategy similar to SA-Gen162, and moves units to the same mountain tiles

when it is on the south side. This can be seen in Figure 7.7e. However, on the

north side of the map, units move to the high defence castle tiles, as well as next

to the water tiles. This is seen in Figure 7.7f. Thus, enemy units are at a defence

disadvantage when fighting on both sides of the map, making them more likely to

miss attacks and not dodge away from incoming attacks. Again, this probabilistic

advantage means SB is more likely to win the battle.
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(a) SA-Gen162 - South side (b) SA-Gen162 - North side

(c) SA-Gen176 - South side (d) SA-Gen176 - North side

(e) SB - South side (f) SB - North side3

Figure 7.7: In-game movements of evolved strategies
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Alternative Maps

One concern is that the results above may only be valid on the map they were

evolved on. Therefore, it is informative to examine the performance of an evolved

strategy on different maps, and with differing numbers of units. The strategy selected

was SB as evolved above. It was evaluated on two other Wesnoth multiplayer maps,

and with two numbers of units on each side. The Freelands map is seen in Figure 7.8a

and was selected because it has almost no impassable terrain. The Fallenstar Lake

map was selected because teams start at the mirrored west and east ends of the map,

instead of the south and north ends of other maps. The west half of this symmetrical

map is displayed in Figure 7.8b.

The results of the evaluation of SB on these two maps are seen in Table 7.3.

(a) Freelands map (b) The west half of the Fallenstar Lake map

Figure 7.8: Two maps in Wesnoth
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Table 7.3: SB performance in different environments

(a) On south/west side of map

SClosest SWeakest SDefence SDefault

Standard Map - 5 units 72 71 64 89

Fallenstar - 5 units 60 60 63 16

Fallenstar - 10 units 59 62 73 23

Freelands - 5 units 63 54 66 13

Freelands - 10 units 22 33 45 7

(b) On north/east side of map

SClosest SWeakest SDefence SDefault

Standard Map - 5 units 57 60 57 36

Fallenstar - 5 units 44 38 36 17

Fallenstar - 10 units 39 41 24 15

Freelands - 5 units 39 43 34 6

Freelands - 10 units 80 70 53 15

The results show that the map does have a large impact on the performance of the

strategy, as SB does perform much poorer on maps other than the one it was evolved

on. In particular, it was observed that SDefault did not have the issue of stopping all

actions as often. This could be due to special ‘castle’ tiles, which are high-defence

tiles which SDefault was observed ordering its units to move to. This may account

for the especially low performance of SB against SDefault, and should be removed in

further tests. Modifying the number of units on the Fallenstar map does not seem

to make a significant difference in terms of strategy performance. However, on the

Freelands map, a large change happens when more units are added. Examination

reveals that these extra units happen to move to tiles with high defence, thus gaining

an advantage over the enemy team.
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Another interesting observation is made from examining the maps themselves,

and how strategies are taking advantage of terrain features. A common feature

appears on a number of maps examined, including both maps above. Possibly for

aesthetic reasons, the boundary of the map is comprised of hill or mountain tiles.

These tiles provide a large defence value to units standing on them. As the studied

evolved strategies tend to repeatedly move units in a single direction, units often

end up on these border tiles. While this is a viable strategy for a team, it may be

an unintended consequence of the map design. This simple strategy may also be

delaying evolution, as strategies may be falling into a local optima of moving to the

edge instead of evolving more robust tactics.

For the rest of this work, evolution and evaluation will take place on the original

map as presented in the last chapter.

7.2.2 From Random Strategies

A common strategy in genetic algorithms and genetic programming is to seed

the starting population with randomly initialized individuals [28]. This allows the

evolutionary algorithm to start from solutions randomly placed in strategy space,

as well as create potentially useful subtrees in the initial population. In this work,

strategies were randomly created with 11 nodes each. The fitness graphs from two

evolution runs will be examined, before the performance of two evolved strategies

are discussed.

The fitness improvement for two evolution runs are shown in Figure 7.9. As

with the evolution from the null strategy, Figure 7.9a is of the evolution process

where the strategies undergoing evolution were fixed to the south side of the map,

and Figure 7.9b is where evolving strategies were randomly switching sides. The

opposing strategy was again SDefault.

The average and maximum fitness improve drastically throughout both the evo-

lution runs. However, it should be noted that while the second evolution run was

evolving for 500 generations, the average fitness was much lower. This is likely due

to the strategy switching sides of the map randomly, which may lead to a strategy
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(a) Fixed to south side of map (b) Randomly switched side of map

Figure 7.9: Fitnesses for evolution from random strategies

being fit for one side of the map, but not the other. This suggests a new evaluation

scheme where a strategy is evaluated on both sides before assigning a fitness. This

switching may also be creating the fitness ‘spikes’ seen in the graph.

Another interesting note is that improvements in fitness occur at an earlier gen-

eration than for strategies evolved from the null strategy, as seen in Figure 7.4. This

is most likely due to the random trees possessing more ‘genetic material’ to work

with. As the random trees are combined together and mutated, there is a greater

chance that an improvement in strategy strength will be made.
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Table 7.4: Evaluation of evolved random strategies

(a) On south side of map

SClosest SWeakest SDefence SDefault

SRFS1 13 9 4 14

SRFS2 60 60 19 5

SRFS3 68 40 26 4

SRFixedSide 84 79 69 91

SRRS1 24 21 10 14

SRRS2 54 54 14 6

SRRS3 14 40 26 4

SRRandomSide 33 22 65 36

(b) On north side of map

SClosest SWeakest SDefence SDefault

SRFS1 14 12 4 14

SRFS2 22 12 21 11

SRFS3 33 17 21 11

SRFixedSide 63 66 43 27

SRRS1 37 25 21 24

SRRS2 34 29 13 11

SRRS3 18 53 26 6

SRRandomSide 38 50 32 53

Table 7.4a shows the results for the evolution run where the strategy was fixed

to the south side of the map. SRFSN
are three random strategies from the randomly-

created population. Surprisingly, these strategies do quite well against the hand-built

strategies. However, as expected, they do very poorly against the stronger SDefence

and SDefault. SRFixedSide is the strategy with the top fitness after evolution of this

population. As can be seen from the results, SRFixedSide is a stronger strategy than
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the initial population. 4 In particular, the 91 percent win rate against SDefault is

quite remarkable. An examination indicates that this is due to a unit being moved

to a mountain tile, where the defence value is quite high. SDefault attacks this unit

and consequently loses a large amount of health. After this unit is killed, SDefault

stops ordering units, and the turn limit of the game is reached. This result may

not demonstrate a tactically strong strategy being evolved. However, it is a success

in terms of the fitness function that the evolutionary process was optimizing for.

Therefore, care must be taken to carefully define the fitness function so that only

tactically strong strategies will be selected for. This will be further discussed later

in this chapter.

Table 7.4b shows results when the strategy randomly switched sides of the map

during evolution. SRRandomSide does better than the three starting SRRSN
strategies

against SDefault by quite a significant degree. However, SRRandomSide does not match

the performance of SRFixedSide against SDefault. Again, this may be due to changing

sides during the evolutionary run decreasing the speed of the evolution rate. While

a performance gain is seen against SDefault while on the north side of the map, a

similar result is not seen against of the other strategies, which suggests some degree

of specialization.

7.2.3 From Seeded Strategies

Another way of initializing the starting population is by seeding it with hand-

built strategies [13]. The intention is to provide solutions in the solution-space that

already perform well. The evolutionary algorithm will then search near these points,

and can combine strong solutions together to potentially find even stronger solutions.

As above, the graph of fitness improvement during evolution will be examined before

discussion of the performance of the evolved strategies.

Figure 7.10a is the evolution over 250 generations of strategies which were fixed

to the south side of the map. Figure 7.10b shows the fitnesses of the population

4. Results are statistically significant except for the improvement from SRFS3 when battling

SClosest. The significance is rejected with P = 0.05355
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(a) Evolution with fixed side (b) Evolution with random sides

Figure 7.10: Fitness results for Seeded evolution

of strategies that randomly switched sides throughout 500 generations of evolution.

The overall trend of these graphs is quite interesting. The population was seeded

with the hand-built strategies, including the strong SDefence strategy. This accounts

for the high maximum fitness at the beginning of both runs. Over the generations,

the other strategies in the population become more fit on average as elements from

SDefence are combined in.

Even though the evolution run in Figure 7.10b is twice as long as the first, it

is interesting to note that the maximum fitness found was lower. The strategy

SSFixedSide evolved in this process has a fitness value of 290, while SSRandomSide has a

fitness of 278. As above, this may be attributable to the effects of switching sides

during evolution.
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Table 7.5: Evaluation of evolved seeded strategies

(a) On south side of map

SClosest SWeakest SDefence SDefault

SClosest 43 38 21 35

SWeakest 74 49 22 38

SDefence 70 77 46 58

SSFixedSide 60 66 46 68

SSRandomSide 47 42 33 41

(b) On north side of map

SClosest SWeakest SDefence SDefault

SClosest 43 26 30 24

SWeakest 62 49 23 31

SDefence 79 78 46 42

SSFixedSide 74 49 57 27

SSRandomSide 48 10 37 3

The results in Table 7.5 show the performance of the evolved strategies from both

runs. Unexpectedly, the results of SSFixedSide are not significantly improved compared

to SDefence, one of the strategies SSFixedSide was evolved from. However, SDefence is

quite a strong strategy and is relatively complex. Therefore, it is understandable

that random evolution would fail to find a significantly better strategy on a specific

run. Further research is required to address this issue.

Examining the performance of SSRandomSide, it is found to be significantly weaker

than SSFixedSide. As mentioned above, this may be due to the strategy randomly

switching sides during evolution, preventing a true evaluation of a strategy’s strength.

This issue might prevent continual improvement until a fitness function is used that

does takes the performance of the strategy on both sides of the map into account.
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7.3 Fitness Function Selection

The choice of a fitness function may have a large impact on the rate of evolu-

tion and the resulting strength of the evolved strategy. Therefore, this section will

compare four different fitness functions with the fitness function defined above. The

fitness functions will be described along with a short rationale before the results are

discussed.

In the fitness functions below, N will signify the number of turns in the battle.

The sum of team health on the turn i will be denoted as Si. The team number will

be placed in subscript as required.

7.3.1 Health Difference

The health difference fitness function is used above in the main results. It cal-

culates the difference in the sum of team health at the end of the battle. It was

previously defined in Section 6.2.4 and is presented again in Equation 7.1.

Fitness = SN
1 − SN

2 (7.1)

7.3.2 Average Health

This function was selected for experimentation because of its similarity to the

health difference fitness function. The calculation can be seen in Equation 7.2 and

is simply the average of S over all turns.

Fitness =

(
N∑
i=1

Si

)
/N (7.2)

7.3.3 Competitive

Another fitness function examined also takes the enemy team’s health over the

entire battle into account. It is calculated as the sum of S for team 1 minus the sum

of S for team 2 over all turns, as seen in Equation 7.3.
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Fitness =

(
N∑
i=0

Si
1

)
−

(
N∑
i=0

Si
2

)
(7.3)

7.3.4 Weighted Competitive

Similar to some fitness functions discussed in past literature, weights can also be

placed in the fitness function. This fitness function is a copy of Equation 7.3 with the

addition of a doubling of the second term. The aim of this weighting is to encourage

strategies to deal damage to their enemy even at the expense of their own health.

This fitness function can be seen in Equation 7.4.

Fitness =

(
N∑
i=0

Si
1

)
−

(
2 ∗

N∑
i=0

Si
2

)
(7.4)

7.3.5 Win/Lose

This fitness function simply rewards strategies that won with a fitness value of

100, and strategies that lost with a fitness value of 0. With this fitness function,

strategies can no longer be ranked by selection operators, preventing the evolutionary

algorithm from performing a guided search around the solution space.

7.3.6 Results

To order to examine these fitness functions, strategies were evolved from SNull for

1000 generations using each fitness function. As a comparison, the health difference

function from above was also used as the basis for a control evolution run. Graphs of

the average and maximum fitnesses are found in Figure 7.11 for all fitness functions.

The different fitness functions have differing scales and thus cannot be normalized.

However, the shape of the fitness graph still presents insights. Following a brief

discussion of the fitness figures, the performance of some evolved strategies will be

presented.

An increase in maximum and average fitness can be seen in all evolution runs.

Even without the fitness value guiding the search, the win/lose fitness function in
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Figure 7.11a did find a strategy that can win a battle, though over 10400 strategies

were evaluated before this occurred. In comparing the figures, the health difference

fitness function used in earlier results has a fitness trend that is much flatter than

the first three fitness functions. While this may be a consequence of the random

search, it may also suggest an insight into fitness function selection. The health

difference fitness function only provides a measurement of what has happened on

the last turn of the algorithm. In contrast, the average health, competitive, and

weighted competitive fitness functions give more information about the battle. A

strategy that has performed poorly for most turns will receive a lower fitness value.

This may be useful information for the genetic algorithm to rank strategies more

effectively, which could speed up evolution.
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(a) Win/Lose (b) Average Health

(c) Competitive (d) Weighted Competitive

(e) Health Difference

Figure 7.11: Average and maximum fitness value graphs for five fitness functions
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Table 7.6 shows the win percentage of the evolved strategies against the hand-

built strategies and the default AI. For simplicity, these results were collected from

strategies evaluated alternately between the north and south sides of the map. Thus

there is a single win percentage. The first observation to be made is that all evolved

strategies performed much better against the hand-built strategies. However, their

performance against the default AI is less convincing. In particular, the SAvg. Health

and SHealth Diff. failed to increase their performance against SDefault significantly.

Table 7.6: Performance of strategies evolved with different fitness functions

SClosest SWeakest SDefence SDefault

SNull 12 10 3 14

SWin/Lose 31 27 34 37

SAvg. Health 40 29 25 16

SCompet. 41 38 33 30

SW. Compet. 50 38 27 21

SHealth Diff. 55 42 25 16

Another interesting result is that the SWin/Lose developed a surprisingly strong

strategy, despite an information-poor fitness function. Indeed, its evolved strategy

seems to be relatively effective against SDefault. Further examination of its perfor-

mance in-game indicates that it randomly evolved to move onto a tile with high

defence value. While unexpected, it is a consequence of a stochastic algorithm that

strong solutions can be randomly found.

The above results fail to indicate a superior fitness function to employ. However,

it is interesting how the competitive fitness functions seem to quickly improve the

population within a few generations, while the health difference function improves

its solutions later in the evolution run. Perhaps each fitness function is superior

at different points in the evolutionary algorithm. Future work may consider an

algorithm that dynamically switches fitness functions during evolution.
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7.4 Effect of Randomness

These final results will show the impact of changing the random generator seed

provided to Wesnoth during the evolution of strategies. All experiments presented

above kept the seed constant during evolution, and only varied it during evaluation

of the strategies. This section presents two evolution runs. In the first, the seed

was varied every generation of the evolutionary algorithm. In the second, the seed

was varied for each battle when assigning a fitness function to a strategy. As before,

the average and maximum fitness graphs will be presented before examining the

performance of evolved strategies.

(a) Varying random seed per generation (b) Varying random seed per game

Figure 7.12: Evolution fitness when varying random seed

Figure 7.12 shows the fitness graphs for the two evolution runs. From these

figures, it is clear that varying the seed makes the evolution process a much noisier

process. When varied per generation, evolution does make improvements in both

the maximum and average fitness of the population. This suggests that the effects

of randomness are not large enough to completely deter the evolutionary process. In

contrast, when the random seed is changed every game, it is not clear if any evolution

has occurred at all. This is shown in Figure 7.12b with almost flat fitness values over
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the evolutionary run. Thus, it can be concluded that this level of randomness is

detrimental to the evolutionary algorithm.

Table 7.7: Performance of strategies evolved with varying random seeds

SClosest SWeakest SDefence SDefault

SNull 12 10 3 14

SVaried per Game 12 10 3 14

SVaried per Gen. 27 28 28 47

SA-Gen176 51 46 23 57

The results in Table 7.7 correlate to the graphs in Figure 7.12. SVaried per Game

shows no improvement at all over SNull, while SVaried per Gen. shows improved results.

Results for SA-Gen176 are also present in the table to represent an evolution result

where the seed was kept the same throughout evolution. While SVaried per Gen. has

similar performance to SA-Gen176 against SDefence and SDefault, SVaried per Gen. is not as

powerful against the other hand-built strategies. Thus, these results suggest that the

random seed should be kept constant in order to aid evolution. Any possible benefits

of varying the seed per generation are unclear at this time.
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Chapter 8

Conclusions and Future Work

This chapter will present concluding remarks, focusing on areas of interest and

difficulties encountered. In particular, three key areas of this work will be discussed.

The first area is the relatively straightforward adaptation of the behaviour tree for-

malism to the domain, which highlights the flexibility and power of this formalism.

Following this, issues concerning the evolutionary algorithm will be examined. Fi-

nally, the strategies produced through evolution will be discussed, along with obser-

vations as to their performance in this domain. Potential areas of further study will

be presented throughout this chapter.

8.1 Behaviour Tree Formalism

Overall, the behaviour tree formalism worked harmoniously with the domain and

the evolutionary algorithm. The formalism is highly flexible, human-readable, and

can represent an artificial intelligence at any abstraction level. The usefulness of

behaviour trees is reflected in the growing number of adopters in the video game

industry and academic literature.

Domain-specific modifications to the formalism, such as the definition of appro-

priate action nodes and any blackboard-like structures, does require developer effort

to be successful. In this work, action nodes were sourced from examining other
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strategies and referencing domain knowledge. These action nodes were then used

to hand-build strategies, which were surprisingly strong against the default AI. The

list-based format of data and the black-board structure were created to provide the

evolutionary algorithm the flexibility to recombine and modify strategies without

producing an invalid strategy. This was done to avoid wasted computation and

prevent invalid subtrees from spreading throughout the population. Another key

objective was to maintain the ability to use the genetic operators defined for evolu-

tionary programming. The elegance and modularity of these operators aided in the

rapid development of the evolutionary algorithm.

8.1.1 Future Improvements

Future work related to the behaviour tree formalism may consider the actions

used. In particular, it would be beneficial to have domain experts create these ac-

tions, as well as sample behaviour trees. An open question is whether more node

types would be a help or hindrance to the evolutionary algorithm for this domain.

For example, a Sort node was defined with an attribute to control the sorting be-

haviour. This node type could be split into separate types such as a SortHealth

or SortDistance node. This may complicate the solution search space, or could

potentially increase the success of recombination operators. Explicit condition nodes

also were not employed in this work. While they are often used in practice in the

behaviour tree formalism, they may also increase the difficulty of evolving strong

strategies. This may occur by increasing the number of semantically invalid trees,

or by again increasing the number of solutions in the search space.

8.2 Evolutionary Algorithm

The fitness graphs in the last chapter show that the evolutionary algorithm does

successfully evolve strategies, according to the fitnesses given by the health differ-

ence fitness function. The performance of strategies evolved from the null strategy

and random strategies also demonstrate statistically significant improvements. One
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result seen is that the maximum and average fitness values tends to increase faster

during an evolution run beginning from random strategies over other initializations.

As mentioned before, this may be due to a random tree’s greater chance of strat-

egy improvement through recombination and mutation, as individuals in the initial

population may possess tactically strong subtrees. The results with the evolution

run seeded with the hand-built strategies are less encouraging. As SDefence is already

a strong performing strategy, it may be a local optima in the solution space. This

may be overcome by improving the evolutionary algorithm and the fitness function

to help find a stronger strategy. It may also be beneficial to change the search space

by defining new nodes that a strategy could employ.

The health difference fitness function used in the results presented may not be

the optimal one for this domain. Therefore, a number of evolution experiments were

conducted on different fitness functions in order to examine trends. The results

suggest that fitness functions which provide information on every turn of a battle

may show fitness improvement in evolution at an earlier generation than other fitness

functions. Therefore, fitness functions of this type may be more appropriate to use in

the beginning of an evolution run. The win/lose fitness function was also examined.

A winning strategy was found, despite the low information search performed. An

information-theory approach to fitness functions may offer a metric for determining

fitness function performance. This would be of use in domains such as the one

studied, where there is not a natural or obvious fitness function to choose.

The role of randomness in the evolutionary algorithm was also discussed, as

battles in Wesnoth depend heavily on the random number generator. The effects of

varying the random seed once per evolutionary generation and for every game were

examined. In the case of varying the seed per generation, the fitness improvement

was quite noisy but did not appear to impede the evolution process significantly.

However, further work is required to determine the full effects. In contrast, varying
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the seed per game prevented the evolutionary algorithm from making any fitness

improvements at all. 1

8.2.1 Future Improvements

Fitness functions found in the literature could also be applicable in this domain.

For instance, the weighted competitive function defined in the last chapter could be

improved by adding a dynamically changing weight [50]. In this work by Priesterjahn

et al., the weight decreases during the evolution of strategies in order to steadily

deprioritize damage done to the opponent. Another fitness function may measure if

each unit on the team was effectively used to deal damage, thereby measuring team

coordination [55].

The performance of the evolution algorithm may be significantly increased by the

creation of a more robust evaluation process. As discussed in the previous chapter,

the performance of the evolved strategies were dependent on the terrain configuration

of the map and the starting location of units on a team. Therefore, each strategy

should be evaluated multiple times on different maps and different unit placements in

order to assign a fitness value. This may be prohibitively computationally expensive

unless advanced heuristics are used. For instance, the solution space may be analyzed

and separated into distinct regions of performance. This would allow evolution to be

guided more intelligently, or to avoid evaluating strategies that fall in a poor region

of the space [5, 41].

The use of ‘training camps’ may also provide a method to evolve strong strate-

gies, where sub-problems in the domain are defined for strategies to solve [2]. In

this work, genetic programming trees are evolved for each particular sub-problem.

Trees are then combined together to form a larger strategy that can solve the entire

problem. Results show that a stronger strategy may be obtained with this method

than evolving a whole tree at once.

Another method of evolving strong solutions in a domain is through the use

of co-evolution [3, 52]. This method involves evolving two populations at once,

1. This issue severely impacted preliminary experiments.
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where the populations are in direct competition with each other. As an example,

instead of evaluating strategies against the default AI in the evaluation stage of this

genetic algorithm, battles would be between two strategy populations being evolved

simultaneously. The intention is to use competition between populations to evolve

strong strategies as populations may evolve effective strategies and counter-strategies

during the evolution run.

8.3 Evolved Strategies

The results in the previous chapter showed that evolution of strategies was occur-

ring, and that the performance of evolved strategies was increased by a statistically

significant amount. This was particularly noted in the evolution run starting from

the null strategy. However, further examination of the strategies revealed that these

performance increases were highly dependent on map terrain features and tactically

poor orders. This result is at once encouraging and disappointing. It is encourag-

ing because the evolutionary algorithm did produce strategies that did tend to win

against other strategies. This was mostly done by ordering units to repeatedly move

in one direction, which is effective for some maps. In particular, it is interesting how

this tactic exploits human map designers placing mountains and hills at the edge of

the map. This may have been done for visual effect without regard to this emergent

behaviour.

Initial expectations for this work were that strategies would develop stronger

tactics, possibly involving recognizing high defence terrain. The strategies produced

had a poor tendency to generalize, as seen from their application to different maps

or a different side of the same map. As discussed above, a more robust evaluation

strategy may be needed in order to produce stronger strategies.

8.4 Concluding Remarks

In this work, strategies have successfully been evolved for a turn-based game, with

each evolutionary run taking less than 110 minutes each. Many different elements of
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the entire evolutionary algorithm have been discussed, from strategy representation

to evaluation to modification. This discussion was aided by the presentation of an

example problem, as well as references from the literature.

The behaviour tree formalism has been introduced as a representation of artificial

intelligence used within the video game industry and cited for its flexibility, power,

and human-readability. Modifications made to this formalism to support this domain

were discussed, along with a rationale as to why this formalism is well-suited to be

used for evolutionary computing experiments.

Results of various evolutionary runs were presented, each focusing on a different

parameter of evolution. Strategies were evaluated in the game Battle for Wesnoth in

order to be assigned a fitness value. This fitness value was then used in turn to define

a performance metric for strategies that is robust to randomness. Strategies were

examined in-game and graphically in order to determine their tactics and complexity.

A strategy was evaluated in different environments to determine its generality.

Experiments that focused on different aspects of the evolutionary algorithm pro-

vided a discussion of potential improvements in a number of parameters such as the

fitness function, evaluation regime, and random seed variation, as well as a number

of directions for future work.
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